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Abstract

Many estimators that account for unobserved heterogeneity in binary outcome models

exclude units without variation in the outcome, a form of sample selection. This raises the

specter of sample selection bias. In this article, I discuss the circumstances under which

this sample selection leads to sample selection bias and those under which it does not. Ad-

ditionally, I present a series of simulation studies, with different data generating processes

to measure the extent of this sample selection bias when it occurs. The results show that

sample selection bias is predominantly a concern when unobserved heterogeneity is sys-

tematically correlated observed covariates (and sample selection). The article concludes

with recommendations to apply alternative estimators that impose some assumptions but

avoid sample selection, and its potential bias.
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1 Introduction

The estimation of binary outcome models involves many challenges that continuous outcome

models, usually estimated using linear regression, do not face. An important challenge is dealing

with the presence of unobserved heterogeneity; that is, differences across units of analysis that

are not measured or observed but influence the outcome nonetheless. These differences can take

many forms: the can be random or systematically related to observed covariates; they can affect

the levels of the outcome variable directly or through the independent variables.

An important concern with many methods that account for unobserved heterogeneity arise in

cases with limited within-unit variation in the outcome variable over time. In binary outcome

models (and other discrete outcome models) this lack of variation in the outcome can occur

even when the underlying probability of the outcome occurring has changed.1 This change in

the probability of the outcome without changes in the (observed) discrete outcome itself, has

important consequences for the estimation of the impact of independent variables on the binary

outcome. While these variables potentially impact the probability of the outcome occurring, lack

of variation in the binary outcome leads to several estimating techniques to remove, implicitly or

explicitly, these units from the estimation procedure. That is, this lack of within-unit variation

in the outcome leads to a form of sample selection.

This sample selection has the potential to lead to sample selection bias. Whether this bias

materializes depends on the extent to which the units with and without variation in the binary

outcome differ in terms of the unobserved heterogeneity and how this unobserved heterogeneity

affects the quantities of interest to researchers. When the heterogeneity is mostly random, this

sample selection does not generate sample selection bias2: the effective estimation sample may be

smaller, but is still representative of the overall sample. When the heterogeneity is systematically

related to the independent variables, however, sample selection will lead to sample selection bias:

the effective estimation sample is no longer representative of the full sample.

1Alternatively, we can think of the binary outcome not changing despite the underlying continuous latent
construct that generates the outcome does.

2There may be other sources of bias, however, depending on the estimator.
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In this article I explore the extent of the bias induced by the sample selection that arises from

the lack of within-unit variation in a binary outcome. The analysis and discussion focuses on the

Conditional Maximum Likelihood Estimator (Chamberlain, 1980; Rasch, 1961) and the Fixed-

Effects estimator (both of which induce sample selection) as well as the Correlated Random

Effects (Chamberlain, 1980; Mundlak, 1978) and Penalized Correlated Random Effects (Núñez,

2022) estimators (which use the full sample, but impose some additional assumptions).3 I

analyse the extent of this bias along three main dimensions: (1) the type and extent of unit

unobserved heterogeneity; (2) the number of time periods in the data; and (3) the extent

to which the outcome being studied is rare. This third dimension, the rarity of the events

under study, has been the focus of significant research efforts in the context of unobserved

heterogeneity. Rare events typically imply limited within-unit variation in the outcome, and

thus exacerbates, in some instances severely, this type of sample selection.

2 Unobserved Heterogeneity in Binary Outcome Models

Throughout this article I consider binary outcome data generating processes (DGPs) that

follow a generalized linear model with time-invariant unobserved heterogeneity. These DGPs

consist of a binary response, yit, and a k-dimensional vector of time-varying characteristics, xit,

such that the response for unit i at time t is generated by:

yit = {αi + βixit − εit > 0} (1)

where {A} is an indicator function that takes the value one if A holds and zero otherwise; βi is

a k-dimensional parameter vector that is allowed to vary by unit i; αi is a unit specific intercept

for unit i; and εit is a unit- and time-specific error. Throughout this article, I assume that

3I also discuss other alternative estimators, but do not include them in simulation exercises given that they
have been shown to be outperformed by other estimators. In particular, I briefly discuss Penalized Maximum
Likelihood Fixed Effects (Cook et al., 2020), and bias corrected Fixed Effects (Dhaene and Jochmans, 2015;
Fernandez-Val, 2009; Fernandez-Val and Vella, 2011), and the method proposed in Beck (2018)
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the error term from equation 1, εit, is strictly exogenous. The general notation in equation 1

accommodates a variety of DGPs, depending on whether the parameters are allowed to vary,

βi and αi, the extent to which are correlated with other parameters or variables in the model

when they do (see Table 1 below).

When the error terms are independently and identically distributed according to a known

cumulative distribution function G(·), equation 1 can be alternatively written as:

Prob(yit = 1|xit, αi) = G(αi + βxit) (2)

Typical choices of G(·) are the normal distribution, which gives the probit model, or the logistic

distribution which gives the logit model. Throughout this article I focus on logistic DGPs, for

which G(·) = Λ(·), the logistic link.

The slope parameters of this DGP are sometimes of interest themselves. When these slopes

vary by unit i, researchers may be interested in the average slope instead. However, interest

typically lies in estimating partial effects and probabilities. In the presence of unobserved

heterogeneity (in the form of varying intercepts or varying slopes), these partial effects are

calculated by taking expectations over the unobserved heterogeneity. The partial effects for

equation 2 are defined by:

PEj(x) = E

[
∂

∂xj
G(αi + βix)|x

]
, j = 1, ..., k (3)

where xj denotes the jth element of x. Additionally, researchers may be interested in the average

partial effect, defined as:

APEj = E

[
∂

∂xj
G(αi + βix)

]
, j = 1, .., k (4)

where the last expectation is taking with respect to x, αi and βi.

There are a variety of DGPs that fit within this simple framework. These are differentiated
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by whether β1i and αi vary by individual, and whether this variation is correlated with the

independent variables or not. Here I will focus on only five alternatives, described in Table 1.4

Table 1: DGPs with Unobserved Heterogeneity

βi αi DGP

βi = β ∀ i αi = α ∀ i No Heterogeneity
βi = β ∀ i αi ⊥⊥ x Random Intercepts
βi = β ∀ i αi 6⊥⊥ x Correlated Intercepts
βi ⊥⊥ x αi = α ∀ i Random Coefficients
βi 6⊥⊥ x αi = α ∀ i Correlated Coefficients

The first DGP does not contain unobserved heterogeneity of any kind: all units of analysis are

assumed to have the same intercept and the same slope. This DGP is included as a baseline that

allows for the study of the performance of different estimators in the absence of heterogeneity.

The second and third DGPs consider unobserved heterogeneity in the intercepts. The second

one has random intercepts: the intercepts vary by individual, but the variation is independent

of the observed covariates in the model. In the third DGP, the intercepts vary by individual

and are correlated with the observed covariates (which is the traditional fixed-effects context).

In both cases, the slope is assumed to be the same for every unit.

The fourth and fifth DGPs consider unobserved heterogeneity in the slopes. The fourth has

random coefficients: the slopes vary by unit, but this variation is independent of the observed

covariates. In the fifth DGP, the coefficients not only vary by unit but they are also correlated

to the observed covariates variables. In both cases, the intercept is assumed to be the same for

every unit.

4Other alternatives are combinations of these five. Any issues arising from any of these specifications will
also affect other specifications that are combinations of these five.
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3 Estimation Strategies

Standard Logit

The most basic estimation strategy for a binary outcome model with logistic errors is the

standard logit model. The standard logit model assumes that there is no heterogeneity of any

kind and maximizes the following likelihood:

logL(β, α) =
∑[

yit log(pit) + (1− yit) log(1− pit)
]

(5)

pit = Λ(α + βxit)

If the data generating process follows the No Heterogeneity case, standard logit model will

provide the correct estimates for α, β and the average partial effects described in equation 4.

Importantly, the logit model does not implicitly nor explicitly discard units without variation

in the outcome. Therefore, it does not suffer from sample selection nor sample selection bias.

However, if the data generating process follows a data generating process with any unobserved

heterogeneity, the estimates will be inconsistent.

Conditional Maximum Likelihood Estimation

The functional form of the logit model permits obtaining a conditional distribution that

does not depends on the intercept(s), dubbed Conditional Maximum Likelihood Estimation

or CMLE (Rasch, 1961; Andersen, 1970; Chamberlain, 1984). Here I focus on the conditional

maximum likelihood for the case T = 2. A similar, but more complicated conditional likelihood,

can be built to the same effect when T > 2 (see, for example Wooldridge, 2010, p. 622)

logL(β) =
∑[

{yi1 − yi2 = 1} log Λ
(
(xi2 − xi1)β

)
+ {yi1 − yi2 = −1} log

(
1− Λ

(
(xi2 − xi1)β

))]
(6)

This method estimates β by focusing on those units for which there is variation in the outcome

over time. This results in consistent estimates of β when they are the same for all units in the
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sample, regardless of whether the intercepts vary by unit. However, if the slope parameters vary

in any way, CMLE will produce inconsistent estimates.

The explicit focus on units with variation in the outcome in CMLE, {yi1− yi2 6= 0}, implies

a form of sample selection. If this sample selection is the results of random (independent)

variation in the intercepts, it will not produce sample selection bias. If the intercepts vary

systematically with the observed covariates but the slopes are the same for every unit, there

is no direct bias from sample selection because β is unrelated to the unobserved hetergoeneity.

However, it is possible that some indirect bias occurs: units without variation in the outcome

likely have systematically higher or lower values of the covariates; their exclusion can ultimately

lead to bias. In terms of variation in the slopes, if the variation is random, sample selection bias

should not occur, although estimates of the average slope will be biased due to misspecification.

Finally, cases in which the slopes vary in a way that is correlated with the independent variables

have the potential to lead to sample selection bias (in addition to misspecification bias).

While CMLE is attractive because it can produce consistent estimates of β when the het-

erogeneity is limited to the intercepts, it also has an important shortcoming. By building a

conditional likelihood function that does not depend on the intercepts (varying or not), it can-

not provide estimates for the Average Partial Effects (nor any other measure that depends on

those intercepts). As such, it can be of limited use.

Fixed Effects Logit

Another alternative is to use the Fixed-Effects logit estimator, which treats unit-specific

intercepts as parameters to be estimated, usually implemented as dummy variables for each

unit under analysis. The log-likelihood function for this estimator is:

logL(β, α1, ..., αN) =
∑[

yit log(pit) + (1− yit) log(1− pit)
]

(7)

pit = Λ(α + βxit + αi)
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This estimator does not explicitly ‘remove’ units from estimation as CMLE does. However, it

does remove them implicitly: units without variation in the outcome can be perfectly explained

by setting αi to be infinitely large (positive or negative), which is not well defined. As a

consequence, these observations are removed from estimation nonetheless (see, for example King

and Zeng, 2001; Beck, 2018, 2020). The potential for this method to lead to sample selection

bias in the estimates of β depends on the same conditions as for CMLE: if slopes are the same

for every unit or vary independently of the covariates, there should be no sample selection bias

in estimating β. If the slopes vary and are correlated with the covariates, then sample selection

bias can occur.

The main benefit of the FE estimator relative to CMLE is that it allows for the estimation

of partial effects and probabilities, because it directly produces estimates of the intercepts, at

least for units with variation in the outcome. However, directly estimating these unit-intercepts

leads to the incidental parameters problem (Neyman and Scott, 1948). The FE estimator’s

consistency relies on T -asymptotics. This means that for relatively small T -sizes, it can contain

a severe bias. Larger T -sizes reduce this problem, but there is no clear-cut threshold: Heckman

(1981) suggests the bias due to incidental parameters is negligible for T = 8, while Coupe (2005)

argues that larger values, like T = 16, are necessary. Simulations in this article suggest that

even larger T sizes are not enough if the unobserved heterogeneity is particularly pervasive.

This bias due to incidental parameters also affects estimates of APEs.5

The FE estimator presents additional problems when estimating APEs (and other related

quantities), depending on the type of unobserved heterogeneity. While estimates of β do not

suffer from sample selection bias when there are varying intercepts (only bias from incidental

parameters), APE estimates do. Beyond the fact that unit-specific intercepts are inconsistently

estimated, the intercepts for units without variation in the outcome cannot be estimated at

all. This sample selection tends to occur for units with small partial effects, as units without

variation in the outcome tend to be those with the largest intercepts (positive or negative). As

5However, the bias due to incidental parameters is smaller for APEs than it is for the slopes.
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a consequence, APEs are overestimated. This will occur in cases in which the intercepts are

independent of the covariates as well as when they are not, with the latter having the largest

potential for large bias. A simple (although imperfect) solution is to assume that the partial

effects for units without variation in the outcome is exactly zero. Heterogeneity in the slopes

can also create sample selection bias in cases where this heterogeneity is correlated with the

covariates in the model.

Alternative estimators have been proposed to help deal with this issue. Cook et al. (2020)

propose a Penalized Maximum Likelihood estimator that imposes Jeffreys prior on the fixed-

effects. This constrains them from being infinitely large, thus avoiding discarding observations

without variation in the outcome. Crisman Cox (2019), however, note that this method under-

performs relative to CRE (see next subsection). Another alternative is to rely on bias-corrected

estimators like those proposed by Dhaene and Jochmans (2015), Fernandez-Val (2009) and

Fernandez-Val and Vella (2011), which directly attempt to correct for the bias created by this

issue, provided the T -dimension of the data is large enough. However, Núñez (2022) argues

that the performance of these estimators is relatively poor, unless sample sizes (in N and T )

are very large.

Correlated Random Effects & Penalized Flexible Correlated Random Effects

The Correlated Random Effects (CRE) estimator makes explicit assumptions about how

unobserved heterogeneity in the intercepts relates to the observed covariates. The most common

implementation, drawn from Mundlak (1978), assumes that there are time invariant intercepts

that depend on a linear combination of the time-means of the covariates, as described in equation

8.6 This specification allows for time-invariant intercepts that are correlated with covariates,

but only linearly.

6Chamberlain (1980) proposes a more general version of Mundlak’s specification, modeling the unobserved
heterogeneity in the intercepts by projecting the time dimension of the model into a single dimension. This
similar to a weighted mean of the covariates across time.
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logL(β, α) =
∑[

yit log(pit) + (1− yit) log(1− pit)
]

(8)

pit = Λ(α + βxit + γx̄i)

x̄i =
1

T

T∑
t=1

xit

The main advantage of CRE is that, by providing an explicit functional form for how the

varying intercepts relate to the observed covariates, it allows for the estimation of both the

slopes, β, and the Average Partial Effects. Additionally, it does so without implicitly or ex-

plicitly ‘removing’ observations from the data, avoiding issues of sample selection bias due to

lack of variation in the outcome.7 Another important benefit highlighted by the literature, in

both linear and non-linear contexts, is that while CRE specifications do impose some restric-

tions on the unobserved heterogeneity, there can be large gains in precision as more variation

is conserved for estimating the parameters of interest (see, for example Clark and Linzer, 2015;

Bell and Jones, 2015; Crisman Cox, 2019).

These benefits make CRE a very attractive strategy as it allows for the estimation of partial

effects which CMLE cannot, does not suffer from the incidental parameters problem as FE, and

uses all the data, including units without variation in the outcome, to produce the estimates.

These benefits even apply in contexts with rare events data, in which sample selection is greatest,

which is why Crisman Cox (2019) strongly advocates to their use in rare events contexts.

But the CRE estimator does not achieve these benefits for free. Its main shortcoming is

that it restricts the way in which time-invariant intercepts can relate to the observed covariates.

This leaves the estimator prone to misspecification which can lead to inconsistent estimates of

both β and the APEs.8

7Units without variation in the outcome will typically have less influence on estimates of β, because their
behavior will tend to be captured by the γx̄i term. However, since γ is the same for every unit in the sample,
this term cannot fully explain non-varying units as it is not free to become very large. Thus, units without
variation in the outcome still contribute to the estimation of β.

8Crisman Cox (2019) shows that the CRE estimator can be robust to misspecification of the unobserved
heterogeneity. However, simulations results presented below show that when this heterogeneity is pervasive, the
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An alternative to the traditional CRE specifications is the Penalized Flexible Correlated

Random Effects (PF-CRE) estimator proposed in Núñez (2022). Similar to CRE, this estimator

relies on a explicit formulation of the unobserved heterogeneity but relying instead on a flexible

polynomial specification that is more robust to misspecification. This flexible specification is

coupled with a penalization step that effectively selects polynomial terms to induce efficiency.

Thus, this estimator overcomes the misspecification issues present in traditional CRE. At the

same time, similar to CRE, it does not suffer from sample selection issues, since the estimation

relies on the entirety of the sample, including units without variation in the outcome variable.

3.1 Where Selection Bias Comes In

A form of sample selection will occur whenever an estimation method implicitly or explic-

itly ‘removes’ observations in the estimation process. This sample selection can be benign or

pernicious, depending on the specifics of the data generating process. As a general rule, sample

selection will be pernicious and lead to sample selection bias when the excluded observations

differ systematically from the rest; that is, when the units without variation in the outcome

exhibit heterogeneous behavior that is in some way correlated with the parameters of inter-

est. When estimating Average Partial Effects, sample selection bias will occur when units have

heterogeneous slopes or intercepts (or both) and when the excluded units have systematically

different ones compared to the non-excluded ones (in at least one dimension). This implies

that random intercepts and random slopes do not lead to sample selection bias; but correlated

intercepts and correlated slopes do.

The extent or severity of this sample selection bias, when present, depends on three ad-

ditional factors. The first is the extent to which the unobserved heterogeneity (in slopes or

intercepts) is correlated with the observed components of the model: the stronger the rela-

tionship, the larger the sample selection bias. The second factor is the share of units that are

excluded due to lack of variation in the outcome; this in turn depends on the extent to which

standard CRE can produce estimates with a large bias due to misspecification.
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the event under study is considered rare (or unlikely).9 The third factor is the number of time-

periods in the data: ceteris paribus, more time periods translate into a lower likelihood of units

not experiencing variation in the outcome, thus reducing the extent of the sample selection, and

consequently the bias caused by it.

It is important to note here that different estimators may suffer from other sources of bias

in the presence of unobserved heterogeneity (whether random or systematic), beyond sample

selection bias. For this reason, when analyzing the results of the simulations presented in the

following section, it is important to consider how any bias in the estimates varies with the extent

of the sample selection challenge. This is most easily done by comparing the extent of the bias

in simulations with rare or very rare events and those in which the events are not rare.

4 Data Generating Process for Simulations

This section describes specifics of the data generating processes used in the simulations

presented below. In all cases, the outcome depends on a latent index, z, with the following

functional form:

zit = α + β1ix1it + β2x2it + β3x3it + αi (9)

where x1it, x2it, and x3it are the values of three independent variables for each unit i in period

t; β1i is the coefficient for the first independent variable and, in principle, it is allowed to vary

by unit i; β2 and and β3 are the fixed coefficients for the other independent variables; α is an

intercept; and αi is a unit-specific additional intercept.

With the addition of an extreme type-I error term, ε, consider the the following latent

outcome variable:

y∗it = zit − εit (10)

9Please note that while the literature focuses on ‘rare’ events, very common events create exactly the same
problems.
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From this, the probability of the outcome occurring is defined as:

P (yit = 1) = P (y∗it > 0) = Λ(zit) =
1

1 + e−zit
(11)

where Λ(·) is the logit link.

In all cases, the three independent variables are normally distributed with means zero and

the following covariance matrix:

xit ∼ N (0,Σ) (12)

Σi,j =


1

2|i−j| ; |i− j| ≤ 2

0; otherwise

(13)

The data generating processes of interest are differentiated by the specification for αi and

βi, which are presented in Table 2.

Table 2: Models of Heterogeneity Considered

Model β1i αi

No Heterogeneity β1i = 1 ∀ i αi = 0 ∀ i
Random Intercepts β1i = 1 ∀ i αi ∼ N (0, 1)
Correlated Intercepts β1i = 1 ∀ i αi = 3

4
(−2x1i1 + 0.3x22i1) + 1

4
εi, εi ∼ N (0, 1)

Random Coefs β1i ∼ N (1, 1) αi = 0 ∀ i
Correlated Coefs β1i = 1− x1i1 + 1

2
εi, εi ∼ N (0, 1) αi = 0 ∀ i

For the No Heterogeneity case, the coefficient for the first independent variable is set equal

to one for every unit and the unit-specific intercept is set to zero. In the Random Intercepts

case, the coefficient for the first independent variable is fixed at 1 for all units, and the intercept

has a normal distribution centered at zero with variance one. In the Correlated Intercepts case,

the coefficient for the first independent variable is also fixed at 1 for all units, but the intercept is

correlated with both the first and second independent variables in the model. The specific form

of dependence includes a quadratic term for the second independent variable. This quadratic

term is included to avoid overstating the degree to which the standard Correlated Random
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Effects estimator can recover correct estimates.10

The data generating process for the two other models fixes the intercept to zero for all units.

In the Random Coefficients case, the coefficient for the first independent variable has a normal

distribution with expected value 1 and variance 1. In the Correlated Coefficients case, the

coefficient for the first independent variable has a linear correlation with the first independent

variable; but it still has expected value equal to 1.

The final three parameters in this data generating process are the slopes of the second and

third independent variables, β2 and β3, which are set equal to one; and the common intercept,

α, which is manipulated to generate different levels of “rare” events, ranging from relatively

‘common events’ to ‘very rare events.’

4.1 Results

The following results use a sample size of N = 250 and four different longitudinal sizes:

T = 2, 5, 10, 20. I present results for the bias in estimates of β1 (or its expected value) and

estimates of the APE. The Appendix includes figures showing the Root Mean Squared Error

(RMSE) for the different estimators.

Let us begin with the bias in the estimates of β from the Conditional Maximum Likelihood

estimator, described in equation 6, which are presented in the first row of Figure 1. Since

this method does not allow for the estimation of Average Partial Effects, only the results for

estimated slopes are presented. This estimator has no bias (or a negligible one) for the data

generating processes with no heterogeneity, random intercepts, and correlated intercepts. The

only exception is for cases in which events are rare and the time-dimension of the data is

smallest, T = 2.11 This is expected, as these three data generating processes fit perfectly within

the assumptions of CMLE. The rightmost top two panels present the bias of CMLE in estimating

the average of βi. For both data generating processes CMLE produces biased estimates, which

10A purely linear dependence between the covariates and the intercept fits exactly in the assumptions of CRE,
but may be limiting in real-life applications.

11This is not surprising, since a the combination of a rare events and smaller sample size leaves little information
in the data to estimate the parameters consistently.
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is expected since CMLE does not account for heterogeneity in the slopes of the data generating

processes.

Is there a sample selection bias induced by the rarity of the events for CMLE? As the top

panels of Figure 1 show, the estimator’s bias is about the same, regardless of how rare the

events are.12 For the first three DGPs this is due to the slope of the model, β, being the

same for the units with variation in the outcome and those without variation in the outcome.

Sample selection occurs, but it is independent of β and thus leads to no bias. In the random

coefficients case, the bias is not affected by the rarity of the events because the distribution of

βi is independent of whether an individual experiences variation in the outcome or not. The

results for the fifth DGP, correlated coefficients, warrants a more careful description. In this

case, the parameter βi is correlated with the independent variables. Additionally, individuals

with more extreme values of the independent variable should be more likely to experience no

variation in the outcome. Since the slope for these individuals is different, the rarer the events

the larger the bias should be. However, the bias does not change with the rarity of the events,

which is somewhat unexpected for this data generating process. Estimates in this case are

biased nonetheless, but the rarity of events does not seem to have a noticeable impact.13

Overall, CMLE estimates β (or average β), do not seem to experience sample selection bias

due to the rarity of the event under study. When CMLE is biased, as in the cases with varying

coefficients, it is due to model misspecification instead.

The next estimator is the Correlated Random Effects, for which both β and the Average

Partial Effect (APE) can be estimated. The bias of CRE for the slope and the APE are

presented in the second row of Figures 1 and 2. The GDPs with no heterogeneity and the one

with random intercepts fit within the assumptions of the CRE estimator; therefore, we should

expect no bias in those cases. This is precisely what the figures show (except for T = 2). In terms

of correlated intercepts, the traditional CRE estimator is consistent as long as the heterogeneity

12The only caveat is for very small T .
13It is possible that the heterogeneity in the slopes is not sufficiently pervasive.
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Figure 1: Bias in estimated slopes β

A. No Hetero B. Rnd Intercept C. Corr Intercept D. Rnd Coefs E. Corr Coefs

C
M

LE
C

R
E

P
F

C
R

E
F

E

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

T

bi
as

Not Rare Rare Very Rare

All simulations come from a sample size of N = 250 units. For Random Coefficients and Correlated Coefficients,
bias is calculated relative to the average slope.
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in the intercept is linear in the independent variables. The DGP used here, however, violates

this assumption, which is the reason why estimates for β and the APE are biased.14 In the case

of random coefficients, the estimates of β are biased due to the assumption (incorrect in this

case) of constant slopes, but estimates of the Average Partial Effects have relatively low bias.

The reason for this is that the estimates of β factor into the APE in two opposing ways that

seem to nearly compensate each other (this also happens in the standard logit model). Finally,

CRE produces biased estimates of both β and the APE in the correlated coefficients case.

The rarity of the events under study does not have a noticeable impact in the bias of β

estimates from CRE. It does, however, affect the bias of the Average Partial Effect estimates

in the Correlated Intercepts and Correlated Coefficients DGPs: the rarer the outcomes, the

higher the bias of the APE. However, this increased bias is not due to sample selection as CRE

uses all units to produce the estimates. Instead, this bias comes from the fact that CRE is

misspecified for both data generating processes; the rarity of the outcome simply exacerbates

the misspecification bias, but it is not the cause of it.

The third rows in Figures 1 and 2 present the bias in estimates β and APE from the PF-CRE

estimator. The performance of this estimator is similar to that of CRE in the No Heterogeneity

and Random Intercept cases, which is expected since CRE is a special case of PF-CRE. For the

Correlated Intercepts case, however, PF-CRE does not show any bias (except for T = 2 with

very rare events), as this estimator is better able to capture non-linearities in the way that the

heterogeneous intercepts relate to the observed covariates. Compared to CRE, the improvement

of PF-CRE in the Correlated Intercepts case is most notable in APE estimates. For the Random

Coefficients and Correlated Coefficients cases, PF-CRE has a similar performance to CRE, as

neither of these estimators accommodates for heterogeneity in the slopes.

14The bias of β in from CRE in the Correlated Intercepts DGP is not very large. This is because the non-
linearity in the heterogeneity comes x2 rather than x1 and thus tends to affect the slope of x1, the focus of Figure
1, less than the other slope. This bias would be larger if the independent variables were more highly correlated
to each other. The bias for the APE is larger because the APE depends on directly on all independent variables
and coefficients.
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The fourth rows of Figures 1 and 2 shows the bias from the Fixed-Effects estimators. The

Fixed-Effects estimator produces biased estimates of β for the No Heterogeneity, Random In-

tercepts, and Correlated Intercept cases. This bias is predominantly a consequence of the

incidental parameters problem and slowly disappears as T increases.15 The bias in estimates

of β tend to be somewhat larger when events are rarer, suggesting that rare events exacerbate

the incidental parameters problem. In terms of estimates of Average Partial Effects, the bias

disappears quickly for the No Heterogeneity and Random Intercepts cases. For the Correlated

Intercept case, however, the bias does not disappear completely as the T -dimension of the data

increases and it is much more severe for cases with rare events. This is a clear indication of

sample selection bias at play: the units which the FE model implicitly discards in the estimation

process have systematically different intercepts that those used in the estimation, which means

that Average Partial Effects are calculated on a non-representative subsample of the original

data.

For the Random Coefficients case, estimates of β are systematically biased because the

FE estimator is misspecified for this case; however, APEs show very little to no bias. In

both cases, the bias does not vary with the rarity of events. For the final DGP, Correlated

Coefficients, Fixed-Effects estimates of both β and the APEs are bias. Additionally, the bias in

APE estimates increases with the rarity of events.

The final estimator considered is the linear probability model with fixed effects. Parameter

estimates from this model are approximations of the Average Partial Effect and are thus pre-

sented in the first row of Figure 2. In both the No Heterogeneity and Random Intercept cases,

the linear probability model shows no bias. In the Correlated Intercepts case, the linear model

is biased for a similar reason FE is: units without variation in the outcome do not influence

the the estimates of the linear model’s slopes, which implicitly means excluding from estima-

tion. This bias increases with the rarity of events and is a consequence of the sample selection

15Note that even for T = 20, which is relatively large, the FE estimator retains a considerable bias in estimates
of β, suggesting that common recommendations of T = 8 (Heckman, 1981) or T = 16 (Coupe, 2005) as sufficient
to overcome this problem may only apply to certain circumstances.
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Figure 2: Bias Average Partial Effect
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induced by the estimation procedure: the units without variation in the outcome are effectively

excluded from estimation (the fixed-effects perfectly explain them) and they are also the units

that typically have much smaller partial effects. The bias of the linear model in the Random

Coefficients case tends to be relatively small, whereas for the Correlated Coefficients case it

tends to be large, and worsen with the rarity of events.

Overall, sample selection bias induced by lack of within-unit variation in the outcome occurs

when the quantities of interest exhibit individual variation that correlates with the sample

selection. This limits the problem to two data generating process: Correlated Intercepts and

Correlated Coefficients.

CMLE estimates of the slopes always experience sample selection. In the Correlated Inter-

cepts case, this does not generate sample selection bias in estimates of β because the slope is

the same for every unit. In the Correlated Coefficients case, while CMLE should be affected by

sample selection bias, the simulations presented here find no evidence of it in practice.16

Similar to CMLE, FE estimates always experience sample selection. In the cases where

the slopes are homogeneous, FE estimates of β should not experience bias from this sample

selection. Instead, the bias of FE estimates in these cases comes from the incidental parameters

problem, which disappears slowly as the number of time periods, T , increases. The sample

selection issue does seem to exacerbate this bias, but likely due to sample selection reducing

the sample size and making convergence slower. For cases with heterogeneous slopes, the FE

estimator shows biased estimates of β due to misspecification, but there is little evidence of

sample selection either exacerbating or causing this bias.

In terms of Average Partial Effects, FE estimates in the Correlated Intercepts case show

very clear evidence of bias due to sample selection. This is precisely because the units that FE

excludes from estimation have systematically different partial effects (very small ones) compared

to the rest of the units. For the Correlated Coefficients case, the impact of sample selection on

16It is possible that the heterogeneity in the slopes is not large enough to generate sufficient differences in the
slopes of units that show no variation in the outcome and units that do.
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FE is not clear.

The extent of this sample selection bias generated by limited within-unit variation of course

depends on the extent of the unobserved heterogeneity. Appendix Figures B1 and B2 present

the bias in estimates of the Average Partial Effects for the Correlated Intercepts and Correlated

Coefficients cases, respectively. Both figures include a case in which the heterogeneity is highly

correlated with the independent variables and one in which it is only moderately correlated with

the independent variables. As both figures show, the bias due to sample selection becomes less

problematic the less pervasive the heterogeneity, especially in the case of Correlated Coefficients.

The largest issue with sample selection induced by lack of within unit variation occurs in the

Fixed Effect estimates of APEs when the data generating process includes correlated intercepts.

A simple correction is to assume that the partial effect for those units without variation is zero.

This can typically help reduce the bias in APEs, as Figure 3 shows, although imperfectly. The

main issue with this correction is that the partial effects for excluded units are not necessarily

exactly zero, but simply likely to be small. As such, this correction can often be excessive.

There are better approaches to resolve the issue of lack of within-unit variation. One solution

is to rely on the Penalized Maximum Likelihood Fixed Effects (PML-FE) estimator proposed by

Cook et al. (2020). This method imposes Jeffreys prior to the unit-specific dummy variables of

the Fixed Effects logit estimator. The imposition of this prior prevents the unit-specific dummies

from perfectly predicting the outcome for units with no variation in it. This is accomplished by

the penalization directly, as it prevents the dummy variables from going to infinity. As such,

it ensures that these units provide some information in estimating β. More importantly, it

ensures that they are included in the estimation of the Average Partial Effect. Moreover, units

without variation in the outcome will not have exactly zero Partial Effects, as in the simple

adjustment presented in Figure 3. Instead, Jeffreys prior bounds the individual partial effects

from being exactly zero. there are also bias-correction techniques that have been proposed for

the Fixed-Effects estimator (Dhaene and Jochmans, 2015; Fernandez-Val, 2009; Fernandez-Val

and Vella, 2011), however, these techniques usually require large sample sizes (in N and T ) to
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produce good estimates.

An alternative solution is to rely on the PF-CRE method previously discussed and included

in the simulations. As shown in Figures 1 and 2 PF-CRE is able to capture unobserved hetero-

geneity in the intercepts without imposing restrictive assumptions (like CRE does) and without

discarding observations without variation in the outcome (like CMLE and FE do). Additionally,

Crisman Cox (2019) shows that the traditional CRE approach tends to outperform PML-FE,

even when it is misspecified. Given that PF-CRE includes the CRE as a specific case, it should

also be expected to outperform PML-FE as well. Additionally, PF-CRE tends to perform well

with relatively small sample sizes, whereas bias-correction models for FE tend to require much

larger samples.

Overall, sample selection induced by lack of variation in the outcome matters only in a

select number of circumstances: when the intercept is correlated with the independent variables

and, to a lesser extent, when the slopes are correlated with the independent variables. For the

correlated intercept cases, there are multiple solutions available that help reduce or eliminate

this bias due to sample selection, while also reasonably avoiding other forms of bias. In the case

of correlated coefficients, the problem is a different one: all the methods commonly used for

binary outcome models produce biased estimates simply because they are misspecified. Limited

variation in the outcome only plays a marginal role in biasing already biased estimates.

5 Conclusion

Binary outcome models with panel data present a variety of challenges, especially in the

presence of unobserved heterogeneity. A particular challenge arises in these models when, in

addition to (or because of) the unobserved heterogeneity, a non-negligible proportion of the

units under analysis do not experience variation in the outcome. Common methods used to

estimate these models, like Conditional Maximum Likelihood, the Fixed Effects logits, and

linear models with fixed effects, implicitly or explicitly discard or exclude these units from the

21



estimation procedure, creating a form of sample selection. Depending on the underlying data

generating process and the parameters of interest, this bias can be benign, simply leading to a

loss of power without any further consequences. But in other circumstances, this bias can be

pernicious, not only leading to a loss of power but also creating sample selection bias in the

estimates.

In principle, any estimation method that involves a form of sample selection will generate

sample selection bias in the estimates if the quantities of interest systematically differ between

units with and without variation in the outcome variable. Thus, theoretically, data generating

processes with random heterogeneity, in either slopes or intercepts, should not experience any

noticeable impact from this type of sample selection. Conversely, data generating processes in

which the heterogeneity is in some way correlated with other elements in the model (and thus

with selection) are susceptible to sample selection bias.

The simulations presented in this article show that sample selection bias, created by lack

of within unit variation in the outcome, does not occur in common estimation methods when

the heterogeneity is random, as expected. When the unobserved heterogeneity is not random

(and correlated with the independent variables), sample selection bias does occur. Focusing on

the estimation Average Partial Effects, which are usually the quantity of interest in much of

research, this sample selection bias tends to be a bigger problem in data generating processes

with heterogeneous unit-intercepts. While data generating processes with heterogeneous slopes

are also influenced by sample selection bias, its impact is more limited. Furthermore, the

common estimators discussed in this article are not designed to deal with varying slopes in the

first place, meaning that their estimates are biased regardless of sample selection problems.

There is an unavoidable reality, however, to cases in which there is unit unobserved het-

erogeneity in conjunction with lack of within unit variation in the outcome: some parameters

simply are not identified for the entire sample. This is especially the case for data generating

processes with unit intercepts, as probabilities and partial effects for units without variation

in the outcome are not identified by the data. There are, however, several partial solutions to
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this problem. One solution is to use the Correlated Random Effects estimator, which imposes

restrictions on the unobserved heterogeneity. If these restrictions are reasonable for the specific

application, then quantities of interest can be estimated consistently. Importantly, CRE does

not discard observations without variation in the outcome, making it an attractive alternative

for rare events data, as advocated by Crisman Cox (2019). Under some circumstances, the

validity of these restrictions can be tested, using a Hausman-style test (Hausman, 1978; Núñez,

2022). A related alternative is to rely on the Penalized Flexible Correlated Random Effects

(PF-CRE) from Núñez (2022), which reduces the chances of misspecification present in the

standard CRE by relying on a flexible polynomial form for the unobserved heterogeneity and

ensures a more efficient estimates thanks to a penalization step, thus retaining and improving

upon the benefits of traditional CRE.

Overall, however, it is important to recognize than when outcomes are rare and there is

little within-unit variation in the outcomes, the data simply does not have enough information

to identify and consistently estimate many of the quantities of interest. When this is the case,

researchers need resort to extra-data information to aid in the identification and estimation of

the quantities of interest. Any method that incorporates extra-data information is as good as

the extra information added or the generality of the assumptions underlying it. As such, careful

consideration and justification of the validity of this additional information or assumptions is

necessary in those cases.
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Appendix A Root Mean Squared Error

Figure A1: RMSE β
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Figure A2: RMSE Average Partial Effect
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Appendix B Less Pervasive Heterogeneity

Figure B1: Bias Average Partial Effect – Correlated Intercept
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Figure B2: Bias Average Partial Effect – Correlated Coefficients
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Figure 3: FE & Adjusted FE

A. No Hetero B. Rnd Intercept C. Corr Intercept D. Rnd Coefs E. Corr Coefs

F
E

F
E

_adj

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

T

bi
as

Not Rare Rare Very Rare

The adjusted FE model assumes that the partial effects for units without variation in the outcome is exactly zero.
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