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Abstract

Unobserved heterogeneity is ubiquitous in empirical research. In this paper, I propose a

method for estimating binary outcome models with panel data in the presence of unobserved

heterogeneity, called the Penalized Flexible Correlated Random Effects (PF-CRE) estimator. I

show that this estimator produces consistent and efficient estimates of the model parameters.

PF-CRE also provides consistent estimates of partial effects, which cannot be calculated with

existing consistent estimators. Using Monte Carlo simulations, I show that PF-CRE performs

well in finite samples. I also illustrate the performance of PF-CRE in two real-data applications:

a small T study on party contacts and tactical voting during the 2015 U.K. General Election;

and a large T panel dealing with the effect of economic sanctions on government stability. In

both cases I find that PF-CRE is a valid approach that reduces bias and/or generates efficiency

gains in the estimation.
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1 Introduction

The presence of unobserved heterogeneity is ubiquitous in observational studies in political science,

and the social sciences in general. It is generally defined as differences across units of analysis that

are not measured, influence the outcome, and may correlate with observed characteristics of interest.

Regardless of its origins and form, unobserved heterogeneity poses the same problem: ignoring it

when it is correlated with the covariates of interest leads to biased and inconsistent estimates of the

quantities of interest.

There are three main types of estimation approaches for binary outcome models with panel data

in the presence of unobserved heterogeneity: treat the heterogeneity as parameters to be estimated;

use conditional maximum likelihood estimation (Rasch, 1961; Chamberlain, 1980) and related semi-

parametric techniques (e.g., Abrevaya, 2000); or use random or correlated random effects (Mundlak,

1978; Chamberlain, 1980).1 Each of these approaches suffers from one of three problems. They pro-

duce inconsistent and biased estimates, cannot produce estimates of the probability of the outcome

nor partial effects of the covariates of interest, or they require making restrictive assumptions about

how the unobserved heterogeneity relates to the observed covariates in the model.2 A fourth prob-

lem applies to the first two approaches and is particularly pervasive in rare-events data: accounting

for unobserved heterogeneity can absorb most of the cross-sectional variation in the data leading to

very large uncertainty about the quantities of interest and consequently inconclusive results (see, for

example Beck and Katz, 2001).

In this paper I develop an estimator that deals with unobserved heterogeneity in binary outcome

models, the Penalized Flexible Correlated Random Effects (PF-CRE) estimator.3 In the PF-CRE

estimator, I explicitly account for the correlation between the observed and unobserved components of

the model, using a large flexible specification (more details below). Moreover, I include a penalization

step for variable selection to induce efficiency. This estimator addresses the four problems described

above: it provides consistent estimates for the model parameters, allows for the estimation of partial

1Each of these approaches has received attention in the political science literature, in the past as well as recently.
See for example Beck and Katz (2001); Coupe (2005); Greene (2004); Beck (2018, 2020); Cook et al. (2020) on FE;
Beck (2018, 2020) on CMLE; and Bell and Jones (2015); Clark and Linzer (2015) for the linear CRE and Crisman Cox
(2019) for the binary case. Further discussion of this literature is included in Section 3

2Making restrictive assumptions about the individual heterogeneity also leads to biased estimates if those assumptions
do not hold. I distinguish the bias and inconsistency that arise from unrealistic assumptions from the one that arises
from the estimation procedure itself.

3I have also developed an R package called PFCRE that implements this estimator.
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effects, makes mild assumptions about the unobserved heterogeneity, and does not discard all cross-

sectional variation in the data.

The PF-CRE estimator builds upon the correlated random effects (CRE) approach by using a rich

and flexible specification of the correlation between the unobserved heterogeneity and the observed

covariates in the model derived from a higher level assumption called exchangeability. This flexi-

ble specification is composed of functions of the observed covariates (such as individual time-means

and other exchangeable functions4), additional observed time-invariant characteristics, and higher or-

der interactions between these terms. The flexible specification in PF-CRE requires making weaker

assumptions about the unobserved heterogeneity than in the traditional CRE approach. Weaker as-

sumptions mean that PF-CRE is more likely to capture the underlying heterogeneity correctly and

lead to correct inferences.

The key challenge of the specification in PF-CRE is that it requires the estimation of additional

parameters, which can increase uncertainty. To address this dimensionality issue, I estimate the model

via penalized Maximum Likelihood using the Smoothly Clipped Absolute Deviation (SCAD) penalty

(Fan and Li, 2001). When the penalized likelihood is maximized, the polynomial coefficients with

little or no predictive power are shrunk to zero, a form of variable selection. In the case of PF-

CRE, the penalization selects the polynomial terms that are necessary to control for the unobserved

heterogeneity and discards the rest. Since the main covariates of interest are not penalized in PF-CRE,

no shrinkage is introduced to those parameters directly. The reduction of dimensionality is especially

useful in small samples, as it can significantly reduce the variance of the estimates, leading to more

accurate inferences. The estimator is implemented with an approximate algorithm that shows good

performance in simulation studies.

The assumptions underlying the PF-CRE estimator may not always be sufficient to capture the

unobserved heterogeneity in the data. The underlying heterogeneity may be correlated with the

observed covariates in a highly convoluted way that PF-CRE may fail to successfully approximate.

Thus, for the logistic case, I present a model specification test to determine whether the PF-CRE

approach is appropriate for the data at hand. This provides an indirect test of the assumptions in

PF-CRE and a tool to help researchers decide when it is correct to use it.

4Exchangeable functions are those for which the order of their arguments does not change their value. For example,
moments are exchangeable functions: an average does not change if the order in which the terms enter the sum is
altered.
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I study the small sample performance of the PF-CRE estimator using Monte Carlo simulations.

The simulations show that the asymptotic properties of PF-CRE hold in small samples despite the

approximate nature of the algorithm, and that it performs better than alternative estimators. For the

logistic case, the simulations show that the rejection rate of the specification test is close to theoretical

levels.

Additionally, I illustrate the performance of PF-CRE in two applications: a small T panel on

tactical voting in the United Kingdom; and a large T panel that replicates Marinov (2005)’s study

of economic sanctions. In both cases, the specification test suggests PF-CRE’s assumptions hold and

both highlight the advantages of the method.

2 Penalized Flexible Correlated Random Effects

A binary outcome model with unobserved heterogeneity consists of a binary reponse, yit, and a k-

dimensional vector of time-varying characteristics, xit, such that the response for individual i at time

t is generated by:

yit = I[α + xitβ + ci − εit > 0], i = 1, ..., n, t = 1, ..., T, (1)

where I[A] is an indicator function that takes the value of one if A holds and zero otherwise; α is

a constant; β is a k-dimensional parameter vector; ci is the unobserved heterogeneity that is constant

over time; and εit is an individual- and time-specific error.5

When the error terms are independently and identically distributed according to a known cumu-

lative distribution G(·), equation 1 can be alternatively written as:

Prob(yit = 1|xit, ci) = G(α + xitβ + ci). (2)

Typical choices of G(·) are the normal distribution, which gives the probit model, or the logistic

distribution, which gives the logit model.

While model parameters β may be of interest in themselves, researchers are usually interested in

estimating partial effects and probabilities. In the presence of unobserved heterogeneity these partial

effects are calculated by taking expectations over c.6 The partial effects for the model in equation 2

are defined by:

5The focus on a balanced panel is for simplicity; however, T can differ across individuals.
6Alternatively, one can calculate effects for particular values of c. However, I prefer not to take this approach, as it

presumes knowledge about which values of c are interesting, even though it is an unobserved quantity.
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PEj(x) = E

[
∂

∂xj
G(α + xβ + c)

∣∣x] , j = 1, ..., k (3)

where xj denotes that jth element of x. Additionally, researchers may be interested in the average

partial effect, defined as:

APEj = E

[
∂

∂xj
G(α + xβ + c)

]
, j = 1, ..., k (4)

where the last expectation is taken with respect to both x and c.7

2.1 Assumptions for Identification and Estimation

The PF-CRE method focuses on a particular challenge in panel data: the presence of time-invariant

unobserved heterogeneity. This setting is represented in Figure 1 where the identification challenge lies

in ci being unobserved, influencing the outcome, and being correlated with the time-varying covariates

xit.
8 Thus, this setting does not encompass other potentially interesting relationships in panel data

like dynamic effects, which have also received attention recently (e.g., Blackwell and Glynn, 2018).

The assumption underpinning all models like the one represented in Figure 1 is that the observed

covariates are strictly exogenous conditional on the unobserved heterogeneity:

h(yit|xi1, ...., xiT , ci) = h(yit|xit, ci), ∀ t = 1, ..., T,

where h is a density function. This exogeneity assumption, common to all common approaches to

unobserved heterogeneity in binary outcome models, rules out models with lagged dependent variables

as well as other models with dynamic effects (see, for example Wooldridge, 2010, p610–611).

While the model parameters (and probabilities) can be non-parametrically identified (with some

mild assumptions), consistent estimation is typically not possible without further restrictions, partic-

ularly when T is small and the incidental parameters problem is at its greatest.

A common approach is to restrict the distribution of ci conditional on (xi1, ..., xiT ). Here, rather

than directly imposing ad hoc assumptions about this distribution, I begin with a higher-level as-

sumption about the relationship between the unobserved heterogeneity and the observed covariates.

7Note that some authors refer to equation 3 as the average partial effect, as it is averaging over the distribution of
the unobserved heterogeneity. However, researchers also use the term average partial effect for equation 4. I reserve
the term average partial effect for equation 4.

8When c is independent of x, it is sometimes known as a random effect. This case does not pose significant challenges
to traditional estimators. The PF-CRE approach is also valid for this case. However, if it is known that the unobserved
heterogeneity is fact independent of x, a random effects estimator will be preferable.
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Figure 1: Relationships between the variables

yit

εit

xit

ciyis

εis

xis

Solid lines represent the effects of interest. The subindex i refers to a unit of analysis, whereas s and
t refer to distinct time periods. Other periods are excluded to simplify exposition

Assumption 1 (Exchangeability)

f(ci|xi1, ..., xiT ) = f(ci|xis1 , ..., xisT ), where sj ∈ {1, ..., T}, sj 6= sj′ .

Assumption 1 requires that the distribution of the unobserved heterogeneity conditional on the

observed covariates, f(ci|xi1, ..., xiT ), does not depend on the order in which xit enters the density

f(ci|·).

Under Assumption 1, without loss of generality, f(ci|xi1, ..., xiT ) can be written as a polynomial on

z1i , ..., z
T
i , where zti =

T∑
s=1

(xis)
t (Altonji and Matzkin, 2005, and references therein for further details).9

Note that when divided by T , (z1i , ..., z
T
i ) are in fact the first T non-central moments of (xi1, ..., xiT )

for each i.10

In most circumstances, researchers also observe time-invariant information, wi, about each indi-

vidual i, such as birth gender, race, and year of birth. These time-invariant characteristics can be

added to the conditional distribution of ci to improve fit. Moreover, the inclusion of these auxiliary

variables can help the exchangeability assumption hold.

The exogeneity assumption together with exchangeability are sufficient to non-parametrically iden-

tify the model parameters and probabilities in theory (Altonji and Matzkin, 2005). However, assump-

tion 1 alone is not sufficient in practice. The reason is that the first T non-central moments characterize

the T observations per individual i, thus exhausting the degrees of freedom.11 Therefore, additional

restrictions are necessary for identification and practical estimation:

9The Weierstrass approximation theorem establishes that a function with bounded support can be uniformly ap-
proximated by a polynomial function. Because of exchangeability, this is a symmetric polynomial. By the fundamental
theorem of symmetric polynomials, it may be written as a polynomial in the power functions (i.e., the moments). See
Altonji and Matzkin (2005, p. 1062). Other polynomial bases can be used. I use the power functions because they
have a more intuitive interpretation.

10Polynomial bases other than the moments (power functions) could be used to the same effect as they ultimately
create the same conditioning set (see Altonji and Matzkin, 2005). Using moments, however, creates a direct comparison
to CRE.

11The exact same problem arises if other polynomial bases are used.
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Assumption 2 (Linear Index) The conditional density function f(ci|z1i , ..., zTi , wi) depends on a

linear index of (z1i , ..., z
T
i , wi) and interaction terms, for some τ < T . That is:

f(ci|z1i , ..., zTi , wi) = f(ci|ziγ),

where zi is the vector of the first τ moments, the observed time-invariant characteristics, wi, and

interaction terms.

Under Assumption 2, I restrict attention to a linear index of the first τ moments of (xi1, ..., xiT ),

observed time-invariant characteristics, and interaction terms. Notice that this is simply a truncation

of the polynomial derived from exchangeability. This implies a stronger condition than exchangeability

alone, but it maintains sufficient flexibility to capture (or approximate) the conditional distribution

of the unobserved heterogeneity.

With Assumptions 1 and 2 (together with exogeneity) it is possible to consistently estimate model

parameters semi-parametrically up-to-scale by relying, for example, on the Maximum Score estimator

(Manski, 1987). But estimation of probabilities is not directly possible.12 Full parametric estimation,

then, requires specifying a distributional form.

Assumption 3 (Normality) f(ci|·) is a normal density function with variance σ2.

Here I use a normal distribution, as its use is widespread in correlated random effects models; in

fact, it is the only distribution used, to the best of my knowledge.13 However, other distributions are

possible, as long as they have finite moments.14 Combining assumptions 1, 2, and 3, the unobserved

heterogeneity and its density function can be written as:

ci = ziγ + ηi, ηi ∼ N (0, σ2), f(ci|xi1, ..., xiT ) = N (ziγ, σ
2). (5)

2.2 Estimation

Imposing Assumptions 1, 2, and 3 to the model in equation 2 results in the following specification:

Prob(yit = 1|xit, ci) = G(α + xitβ + ziγ + ηi), with ηi
iid∼ N (0, σ2), (6)

12One alternative is to combine parameter estimates from the Maximum Score estimator with a kernel method to
estimate probabilities. While appealing because it does not introduce distributional assumptions, the combination of a
semiparametric with a non-parametric method makes convergence slow and uncertainty very large, possibly rendering
estimates useless unless a very large dataset is available.

13In fact, Beck and Katz (2007) show that random effects models perform well, even when the normality assumption
is violated.

14Finite moments are required because expectations are not well defined otherwise.
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where zi is a vector of moments of (xi1, ..., xiT ), observed time-invariant characteristics, and interaction

terms among these (the polynomial); and ηi is a normally distributed random effect with variance σ2

that is independent of the covariates of the model.15

In principle, the parameters β in equation 6 can be estimated via Maximum Likelihood. The

log-Likelihood function for this model is:

logL(β, α, γ, σ) =
T∑
t=1

n∑
i=1

[yit log(pit) + (1− yit) log(1− pit)] (7)

pit ≡ Prob(yit = 1|xit) =

∞∫
−∞

G(α + xitβ + ziγ + ηi)
1

σ
φ(ηi/σ)dηi, (8)

where φ(·) is the standard normal density function.

The model in equation 6 represents a flexible specification of a Correlated Random Effects (CRE)

model. It is a CRE-type model because it assumes a specific correlation form between the unobserved

heterogeneity and the covariates in the model (represented by ziγ). It is flexible because, under

Assumptions 1 and 2, it can accommodate a wide range of correlation forms.

The flexible specification derived from Assumptions 1 and 2 requires the estimation of additional

coefficients (γ). When the number of covariates is small, γ is relatively low dimensional. But the

dimensionality of γ increases exponentially with the number of covariates in the model. However, the

assumptions establish that the polynomial ziγ is sufficient to capture the unobserved heterogeneity,

but do not require that all its terms are necessary for this. That is, the underlying unobserved

heterogeneity may have a simpler form that relies only on some of the terms of the polynomial. For

this reason, detecting unnecessary terms in the polynomial and removing them can produce more

efficient estimates of the parameters of interest by simplifying the final specification.

To address the dimensionality issue introduced by the flexible specification, I use a penalized

Maximum Likelihood estimation technique. This technique performs variable selection in an efficient

way that avoids computing an infeasible number of models to choose the one with the better fit. I

estimate β using Penalized Flexible Correlated Random Effects (PF-CRE), which is defined by:

(β̂, α̂, γ̂, σ̂) = arg max
(β,α,γ,σ)

logL(β, α, γ, σ)− Πλ(γ), (9)

where Πλ(·) is a penalty function that penalizes only the terms used to model the unobserved hetero-

geneity (γ), but not the parameters associated with the observed covariates (β). I use the Smoothly

15Independence follows from Assumptions 1 and 2, and normality from Assumption 3.
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Clipped Absolute Deviation (SCAD) penalty (Fan and Li, 2001), defined as:

Πλ(γ) =


λ|γ| if |γ| ≤ λ,

− |γ|
2−2aλ|γ|+λ2
2(a−1) if λ < |γ| ≤ aλ,

(a+1)λ2

2
if |γ| > aλ,

(10)

where a and λ are constants that govern the penalization. The SCAD penalty shrinks small values

of γ towards zero, while leaving larger values of γ mostly unpenalized. This way, SCAD selects those

terms in zi that are most predictive of the outcome and discards those that are not. Importantly, the

shrinkage introduced by the SCAD penalty in PF-CRE does not affect the coefficients of interest, β,

directly since they are left unpenalized.16 I use the SCAD penalty because it has the Oracle property

for this problem. The Oracle property establishes that the penalized estimation selects the correct

set of non-zero polynomial terms and that, in pointwise convergence, the asymptotic distribution of

the estimates is the same as the one obtained by estimation with the non-penalized likelihood using

only the correct (but unknown) set of terms. That is, it establishes that, asymptotically, there is no

efficiency cost to variable selection.17

2.3 Asymptotic Properties

Here I discuss the asymptotics of the PF-CRE estimator. I leave issues arising from the computational

implementation to the next subsection. The PF-CRE estimator with the SCAD penalty produces

consistent, efficient, and asymptotically normal estimates of the model parameters, β. I state this

result in the following Theorem 1 for easy reference:

Theorem 1 Under Assumptions 1, 2, and 3,
√
nT (β̂ − β)

d→ N (0, V (β)), (11)

where V (β) is the k× k submatrix for β from the inverse of the Fisher Information matrix of the full

model (that depends on all parameters, α, β, γ, σ).

Theorem 1 follows from standard properties of Maximum Likelihood estimation and the Oracle

property of the SCAD penalty. First, the consistency of the estimator stems from the combination of

standard properties of Maximum Likelihood estimators together with the flexible specification derived

16The parameter a in the SCAD penalty is usually set to a = 2.3 (Fan and Li, 2001). The parameter λ can be chosen
via cross-validation.

17Alternative penalties that have the Oracle property can be used and the asymptotic properties of PF-CRE will be
the same. However, I use SCAD because it shows good finite sample performance relative to, for example, adaptive
LASSO for this problem.
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from the exchangeability and related assumptions. Second, the Oracle property of SCAD establishes

that the penalized estimator has the same asymptotic distribution as the underlying (and unknown)

data generating process (Ibrahim et al., 2011; Hui et al., 2017). Consequently, it has the same

pointwise asymptotic properties of the Maximum Likelihood estimator of the data generating process.

Efficiency and normality of the PF-CRE estimator thus follow from the properties of Maximum

Likelihood estimators.18

It is important to note here that the Oracle property is a pointwise asymptotic convergence result,

rather than a uniform convergence result, which is stronger. The finite sample behavior of estimators

that converge pointwise is not necessarily well behaved as that of estimators that converge uniformly

(Leeb and Pötscher, 2005, 2008). However, poor finite sample behavior is less likely (although possible)

in selection based on regular estimators (Leeb and Pötscher, 2005) like PF-CRE. Moreover, the PF-

CRE estimator does not penalize the main coefficients of interest themselves. As such, it greatly

isolates them from potentially poor finite sample behavior.19 While this poor behavior can occur in

parameters involved in the polynomial that composes the flexible specification, the specific values of

these coefficients are not important per-se individually but as a whole that captures the unobserved

heterogeneity for a particular unit.20 Therefore, while the type of convergence of the estimator could

produce problematic finite sample estimates, poor behavior is less likely to occur in the specific case

of PF-CRE. Additionally, at least for the logistic case, a sanity check is always possible for parameter

estimates by comparing them to the estimates from CMLE (see below). A related concern is that

estimators that include penalization might shrink the variance of main parameter estimates (and

derived quantities) artificially.21 However, since the penalization applies to the polynomial and not

the main coefficients, this is a lesser concern in the practical estimation of PF-CRE in finite samples.

Finally, the simulations presented in Section 5 show no manifestations of poor behavior in finite

samples, although it is possible it may arise.

The next result establishes that the PF-CRE estimates of partial effects are also consistent:

Corollary 1 Under Assumptions 1, 2, and 3, the partial effects are identified, and for all x:

18The asymptotic properties of Maximum Likelihood estimation hold under a number of regularity conditions, which
the PF-CRE model satisfies.

19In fact, Leeb and Pötscher (2008) note that when the parameter space is partitioned issues of maximal risk under-
pinning poor finite sample behavior do not apply to the non-sparse portion, which would correspond to β in PF-CRE.

20This observation is similar to findings in Belloni et al. (2016) who show, for different models, that inference for a
set of parameters of interest in the presence of selection for a different set of variables can achieve uniform convergence
under weak conditions (see also Belloni et al., 2012, 2014)

21See, for example, Knight (2008)
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P̂Ej(x) ≡
∞∫

−∞

g(α̂ + xβ̂ + zγ̂ + η)
1

σ̂
φ(η/σ̂)β̂jdη

p−→ PEj(x), j = 1, ..., k,

where g(·) is the probability density function of G(·).

Moreover, it is asymptotically normal and efficient:
√
nT (P̂Ej(x)− PEj(x))

d−→ N (0,Σ)

The Oracle properties of SCAD guarantee that zγ̂ is a consistent estimator of zγ. Corollary 1

follows from this and Theorem 1 by direct application of the continuous mapping theorem.22 Standard

errors for the partial effects can be obtained via the Delta method or bootstrap.

To estimate the partial effects, it is necessary to specify a value of z. In principle, any value of

z is valid for estimating the partial effects. However, a significant proportion (or all) of the terms

in z are functions of x. For this reason, it is advisable to ensure that the values of x and z used to

calculate the partial effects are consistent with one another to avoid issues similar to those of extreme

counterfactuals (King and Zeng, 2006).

The PF-CRE estimator relies on the SCAD penalty to reduce the dimensionality of the polynomial

used to capture the unobserved heterogeneity. The asymptotic results rely on knowledge of the optimal

penalty parameters λ and a, which in reality are unknown. Fan and Li (2001) note that selection

criteria are not very sensitive to values of a and suggest that a choice of a = 3.7 results in good

practical performance of the penalization. For selection of the λ parameter in SCAD, I rely on a grid

search using the Akaike Information Criterion (AIC) to select the optimal value.23

2.4 Computational Implementation

The PF-CRE estimator is a form of generalized linear mixed model, with fixed coefficients β and γ

and only one random coefficient, the random effect (or random intercept). The computational diffi-

culty in implementing an algorithm for these type of estimators with penalization is the combination

of non-convexity in the penalized likelihood together with the integration required for the random

coefficient(s). Few alternatives exist that implement penalization in generalized linear mixed models

22The continuous mapping theorem states that continuous functions are limit-preserving. Therefore, a continuous
function, G(·), of a random vector, (β̂, α̂, γ̂, σ̂), converges in distribution to the function of the random vector.

23An alternative criterion can also be used. Additionally, it is possible to rely on cross-validation for the selection
of the optimal penalty parameter. However, cross-validation can impose very significant computational costs given
the large number of model estimations required. The simulations presented in Section 5 suggest that AIC has a good
performance; alternative procedures are unlikely to produce any meaningful gains.
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that result in computationally fast and stable algorithms. Ibrahim et al. (2011), for example, produce

an algorithm that simultaneously penalizes and estimates fixed and random coefficients. However, the

algorithm is computationally slow and can produce unstable numerical results.

Given the complexities of computationally implementing penalization in the presence of random

coefficients in non-linear models, I rely on an approximate algorithm with a re-fitting (or hybrid)

step that produces faster results that are numerically more stable and remain accurate. As such, the

estimation proceeds on an approximation that first estimates the unpenalized fixed parameters (β)

and the penalized fixed parameters (γ) using a local quadratic approximation, LQA (Ulbricht, 2012),

that abstracts from the random effect (the only random coefficient in PF-CRE). In a second step, only

the fixed parameters selected by using LQA are used in a maximum likihood re-fitting of the model

that includes the random effect. This approach is somewhat related to the ones used by Schelldorfer

et al. (2011) and Groll and Tutz (2014), both emphasizing the gains in numerical stability as well

as more accurate estimation of the variance of the random coefficients. Schelldorfer et al. (2011)

in particular, notes that the hybrid algorithm performs better in practice, producing results closer

to the Oracle estimator. This is mainly due to the numerical stability of the algorithm more than

compensating for the approximation.24

The particular computational implementation of the model generates some ambiguity about the

extent to which the theoretical asymptotic results are achieved, and establishing the statistical proper-

ties of the algorithm itself is not straightforward. However, the simulations that compare PF-CRE to

the Oracle estimator show that this algorithm is capable of producing estimates that are quite close to

those of the Oracle, strongly suggesting that the approximate algorithm is a very good approximation

to otherwise computationally challenging calculations.

3 Relation to Existing Estimators

As previously mentioned, there are three main strategies for the estimation of binary outcome models

with panel data in the presence of unobserved heterogeneity.25 I briefly discuss each of them and how

24Other researchers have followed related approaches for penalized methods with random effects in different settings.
For example, Lai et al. (2012) in a nonparametric setting for additive mixed models; Lin et al. (2013) use a two-step
algorithm that also penalizes random effects.

25A fourth alternative is the use of the Linear Probability Model, which in some circumstances can produce good
estimates of average partial effects but can produce nonsensical estimates of partial effects for many values of the
independent variables.
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they relate to the PF-CRE estimator.26

The first approach is estimation via Fixed Effects (FE), where the cis are treated as parameters

to be estimated. This is operationalized through dummy variables for each individual in the sample.

When the panel is short (small T ), this requires estimating each dummy with a handful of observations,

a problem known as the incidental parameters problem (first noted by Neyman and Scott, 1948). The

incidental parameters problem implies that estimates from the FE approach are inconsistent for small

T . This bias can be substantial. For example, simulations in Greene (2004) show that with T = 5

this bias can be 40% of the true parameter value. The asymptotic bias is of order Op(T
−1), meaning

that it disappears as T tends to infinity. Monte Carlo evidence in Heckman (1981) suggest that this

bias is negligible for a panel of size T = 8, although more recent studies in Coupe (2005) suggest that

a larger size of T = 16 is preferable.27

In light of the inconsistency of the FE estimator, bias correction procedures have been proposed.28

These corrections reduce the bias; however, they do not eliminate it.29 A related strand of liter-

ature seeks to ameliorate the incidental parameters problem (as well as the computational burden

of estimating n + k parameters) by assuming that the individual heterogeneity is in fact group het-

erogeneity. However, these group fixed-effects estimators also suffer from the incidental parameters

problem (although to a lesser extent) and may not be appropriate for short panels.30

A different, although related, problem with the FE estimator relates to the presence of all-zero

units(see King and Zeng, 2001, for example).31 The FE estimator will effectively remove all zero units.

This can lead to a loss of information resulting in higher uncertainty over the estimates. Moreover,

the effective loss of these observations and the reliance on a subset of the data may result in a form

of sample selection bias, although its consequences cannot really be settled empirically (Beck, 2018,

2020). This issue becomes increasingly relevant with rare-events data, which leads to a large number

of all-zero units. Cook et al. (2020) propose an alternative to estimate fixed-effects models in this

26See Greene (2015) for a review of the literature on parametric estimation of discrete choice models.
27In the case of T = 2 Abrevaya (1997), shows that the maximum likelihood estimates of β using the FE approach

converge to 2β. Thus, dividing the FE estimate by 2 results in a consistent estimate of β. However, the incidental
parameters problem persists in the estimation of partial effects.

28See, for example, Fernandez-Val (2009); Fernandez-Val and Vella (2011); Hahn and Newey (2004); Dhaene and
Jochmans (2015).

29In fact, Dhaene and Jochmans (2015) show that the elimination of the leading term of the bias leads to larger
magnitudes of the higher order terms of the bias in the bias-corrected estimator.

30See, for example, Bonhomme and Manresa (2015); Ando and Bai (2016); Su et al. (2016). Bonhomme et al. (2017)
do not assume group heterogeneity, but assume that the heterogeneity can be coarsened into groups without significant
loss.

31All-one units create an exact mirror problem.
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type of data by relying on a maximum likelihood approach that penalizes the unit dummy variables

using Jeffreys prior. While the imposition of Jeffreys prior on these dummy variables is somewhat

ad hoc, this method can help resolve these issues. Its performance is also assessed by Crisman Cox

(2019), who finds that it is typically outperformed by the traditional CRE method (see below).32

A separate issue in FE, that is also shared by CMLE, occurs when independent variables of in-

terest rarely change. The variation in such variables becomes hard to distinguish from unobserved

heterogeneity and, therefore, methods that allow for essentially unrestricted time-invariant unobserved

heterogeneity will remove most of the variation in the rarely changing covariate thus making it ex-

tremely hard to detect any effect coming from it (see, for example Beck and Katz, 2001; Green et al.,

2001; King, 2001).33

The second approach is estimation via Conditional Maximum Likelihood (CMLE), which results in

consistent estimates of β (Rasch, 1961; Andersen, 1970; Chamberlain, 1984). This approach relies on

conditioning the estimation only on those individuals with variation in the outcome across time. By

restricting the estimation to these individuals, the conditional likelihood only depends on β and not

the unobserved heterogeneity ci, avoiding the incidental parameters problem. However, this property

only holds for the logistic distribution.34

The CMLE approach has two main shortcomings. First, it does not provide estimates of the partial

effects.35 This is because location parameters, ci and α, are not estimated. The second shortcoming

is inefficiency. The CMLE approach allows the heterogeneity to be completely unrestricted, which

implicitly assumes that individuals with no variation in the outcome provide no information about

β. However, if the heterogeneity has a less general form, conditioning on these individuals results in

a loss of information, and consequently larger standard errors in the estimates.36 The same issues

relating to rare-events as well as rarely changing covariates that apply to FE estimation also apply to

32While Cook et al. (2020) shares the idea of penalization with PF-CRE, they penalize different things. Additionally,
the penalization in Cook et al. (2020) is imposed directly, rather than being derived from higher level assumptions.

33This is an issue addressed by Plümper and Troeger (2007, 2011) and Greene (2011) for the linear regression case,
for example.

34Chamberlain (2010) shows that if the support of the observed predictor variables is bounded, then identification
is only possible in the logistic case. Moreover, if the support is unbounded, the information bound is zero unless the
distribution is logistic. This means that consistent estimation at the standard asymptotic rates is only possible in the
logistic case. For alternative semi-parametric estimators that require unbounded support and have slower convergence
rates, see Manski (1987); Abrevaya (2000).

35This is also a problem with semi-parametric alternatives to CMLE.
36Note that the FE approach results in the same kind of information loss without ‘technically’ discarding observations

outright. The behavior of individuals with no variation in the outcome is fully explained by the dummy variables
corresponding to these individuals. Thus, these individuals do not contribute to the estimation of the model parameters
β (see, for example, Beck and Katz, 2001).
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CMLE.

The third approach is estimation via Correlated Random Effects (CRE). This approach requires

making explicit assumptions about the unobserved heterogeneity. The strongest restriction is assuming

that the heterogeneity is independent of the covariates in the model, leading to the Random Effects

(RE) model. Mundlak (1978) proposes to model the unobserved heterogeneity as a linear combination

of the time-means of the covariates and a random effect, which allows for correlation between the model

covariates and the unobserved heterogeneity.37

The main advantage of CRE is that, by providing an explicit model of the unobserved heterogeneity,

it allows for the estimation of partial effects. However, it does so at the cost of restricting the

unobserved heterogeneity with ad-hoc specifications, which depending on the unknown data generating

process they can be severe. When this restriction is not satisfied by the data generating process (which

is unobserved), CRE models are misspecified and provide incorrect estimates of the model parameters

and partial effects.

Implementations of RE and CRE for the linear regression case have received attention form political

scientists relatively recently. For example Clark and Linzer (2015) compare RE models with FE

models and provide guidance in choosing one over the other, emphasizing that while RE models have

more restrictive assumptions they are have lower variances.38 Bell and Jones (2015) discuss CRE

estimation in linear models strongly arguing in their favor relative to FE models, finding them always

preferable.39 While linear models do not suffer from the inconsistency derived from the incidental

parameters problem of non-linear models, the efficiency issues discussed in these papers are closely

related to the efficiency issues that PF-CRE addresses.

Crisman Cox (2019) discusses the CRE estimator in the binary outcome case, with particular

attention to rare-events data. His findings show that CRE models are particularly useful in rare-

events models with unobserved heterogeneity. Moreover, he finds that CRE models can perform

relatively well even when the unobserved heterogeneity is somewhat misspecified. The gains of CRE

37Chamberlain (1980) proposes a more general version of Mundlak’s model, modeling the unobserved heterogeneity
by projecting the time dimension of the model into one dimension. This is akin to a weighted mean of the covariates
across time.

38In fact, the authors note that in some cases, a biased estimator (like RE) can be preferable to an unbiased estimator
(like FE in linear models) provided it results in a sufficiently large reduction in variance.

39It should be noted, however, that part of their strong recommendation may stem for simulations in which the
data generating process was particularly beneficial to CRE models. However, the main point remains: CRE models
can capture a good amount of unobserved heterogeneity that combined with a smaller variance make them attractive
alternatives to fixed-effects models in linear environments.
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are most notable relative to the fixed effects estimator, but he also finds that it typically outperformes

other alternatives, like Beck’s two-step estimator (Beck, 2015) and the penalized maximum likelihood

estimator from Cook et al. (2020).

The PF-CRE estimator introduced in this paper represents a compromise between the unrestricted

unobserved heterogeneity that FE and CMLE allow for and the restrictive and ad-hoc assumptions

underlying CRE models. I achieve this compromise through the exchangeability assumption proposed

in Altonji and Matzkin (2005), which allows me to derive a flexible specification of the unobserved

heterogeneity. This flexible specification can capture a wide range of correlation forms between the

unobserved heterogeneity and the observed covariates in the model.

If the exchangeability assumption holds, the PF-CRE estimator has several advantages relative

to the FE and CMLE approaches. Unlike the FE approach, it does not suffer from the incidental

parameters problem. It also allows for the estimation of probabilities and partial effects, which cannot

be done with CMLE. PF-CRE also provides more efficient estimates of the model parameters than

FE and CMLE. This is because FE and CMLE account for every possible form of correlation between

the covariates and the unobserved heterogeneity, even when it is not necessary. Additionally, PF-

CRE addresses some of the issues stemming from rare-events data with unobserved heterogeneity by

avoiding the pitfalls of ‘losing’ all-zero units in a similar way as CRE models do in both linear (Clark

and Linzer, 2015; Bell and Jones, 2015) and non-linear (Crisman Cox, 2019) environments.

PF-CRE also has benefits relative to traditional CRE models. First, by using a flexible (and

thus more general) specification for the unobserved heterogeneity it can better capture it; in fact,

traditional CRE specifications are nested within PF-CRE. Additionally, the penalization step in PF-

CRE selects the minimal specification that captures the correlation between the observed covariates

and the unobserved heterogeneity, which can lead to efficiency gains as well. In other words, FE

and CMLE assume there is no information in pure cross-sectional variation (an assumption that

exacerbates issues in rare-events data). PF-CRE allows cross-sectional variation to be informative

of the parameter vector β when the estimated specification is sufficiently sparse (i.e., when few γ

parameters are non-zero). This penalization step can also lead to more efficient estimates relative to

CRE when the unobserved heterogeneity is non-pervasive.
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4 Specification Test

The method outlined in Section 2 requires that the unobserved heterogeneity in the data can be

appropriately captured through the flexible correlation specification represented by the polynomial

terms. This does not necessarily hold in every application and this assumption is not directly testable.

However, it is possible to indirectly test PF-CRE assumptions in the logistic case.

If the correlation between the observed and unobserved components of the model can be cor-

rectly captured by the polynomial terms (that is, when the assumptions hold), then the PF-CRE

estimator developed in this paper is both consistent and efficient. For the logistic case, the CMLE

estimator provides a consistent estimator of the model parameters. Under the null hypothesis that

the unobserved heterogeneity can be sufficiently captured by the PF-CRE specification, the PF-CRE

estimator is both consistent and efficient, whereas the CMLE estimator is consistent but inefficient.

Under the alternative hypothesis, the PF-CRE estimator is inconsistent, but the CMLE estimator

remains consistent.40 Following Hausman (1978), I construct a specification test based on the stan-

dardized squared difference between these two estimators. That is, the test statistic is defined as:

δ = d′V (d)−1d, with d = β̂CMLE − β̂PF−CRE, (12)

where V (d) is the variance of d.

Under the null hypothesis, δ is asymptotically distributed χ2 with k degrees of freedom. This is

because both estimators are asymptotically normal with identical means under the null hypothesis,

and therefore their difference, d, is asymptotically normal with mean zero. The χ2
(k) distribution

follows from δ being the sum of the squares of k normally distributed terms.

Under the null hypothesis, the variance V (d) has a simple expression due to the efficiency of the

PF-CRE estimator:41

V (d) = V (β̂CMLE)− V (β̂PF−CRE). (13)

Hence, putting equations 12 and 13 together:

δ ≡
(
β̂CMLE − β̂PF−CRE

)′ (
V (β̂CMLE)− V (β̂PF−CRE)

)−1 (
β̂CMLE − β̂PF−CRE

)
. (14)

Thus, when the test statistic δ takes a small value, there is no evidence to reject the null hypothesis

40The reason the test is restricted to the logistic case is that CMLE is consistent only for the logistic case. Semi-
parametric alternatives to CMLE provide consistent estimates of the model parameters for any distribution. However,
the convergence rates of these estimators is slower than

√
n. For this reason, asymptotic comparisons with the PF-CRE

estimator, which converges at rate
√
n, are not well defined.

41Hausman (1978) shows that the variance of the difference between two consistent estimators when one of them is
efficient is the difference of the variances.
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that the PF-CRE estimator of β is consistent and efficient. This, in turn, provides indirect evidence

of the validity of the PF-CRE assumptions.

5 Simulations

I conduct a series of studies to analyze the performance of the PF-CRE estimator in finite samples

and compare it to that of alternative methods. This is important generally, but particularly given the

pointwise asymptotic convergence of PF-CRE, as well as the approximate nature of the computational

algorithm.

In the first set of simulations I analyze the performance of PF-CRE in estimating model parameters

comparing it Mundlak’s Correlated Random Effects (CRE), the Fixed Effects estimator (FE), and

the Conditional Maximum Likelihood estimator (CMLE).42 43

In the second set, I compare the estimator’s performance for Average Partial Effects. This set

includes the Linear Probability Model and excludes CMLE (since it does not provide estimates of

partial effects and probabilities). The third set of simulations deals with the estimation of probabilities.

Finally, the fourth set of simulations study the specification test for PF-CRE in the logistic case.

Appendices B, C, and D present additional simulations: for rare-events data, for a case in which the

exchangeability assumption in PF-CRE is violated, for the coverage rate of confidence intervals, and

for computing time.

The data generating process in all simulations is given by:

Prob(yit = 1|xit, ci) = Λ(α + xitβ + ci), with xit ∈ R4, β = (1.5, 1, 0.5, 1), α = 0.5, (15)

where Λ(·) is the logistic cumulative distribution and:

ũi ∼ N (0,V), with Vjk = 0.25|j−k|, j, k = 1, ..., 4, (16)

u1i = ũ21i, u2i = ũ2i, u3i = ũ2i × ũ3i,

xkit = ũki +N (0, 0.5),∀ k = 1, ..., 4,

ci = u1i + u2i + u3i

42Mundlak (1978)’s specification of CRE uses the time-means of the covariates to model the unobserved heterogeneity.
It is the same CRE specification used in Crisman Cox (2019)

43Other estimators are available. However, I exclude the bias-corrected Fixed-Effects estimator from Fernandez-Val
(2009) as its performance is quite poor (unreported simulations). I also exclude the methods from Beck (2015) and
Cook et al. (2020) since Crisman Cox (2019) shows they are both typically outperformed by the traditional CRE, which
is nested in PF-CRE.
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This specification for the data generating process has several properties that make it interesting

to study. First, the model is relatively simple and it can therefore illustrate the efficiency gains of

PF-CRE relative to CMLE and FE. Second, because of the inclusion of an interaction and quadratic

term, the traditional CRE approach is misspecified.

The simulations are separated into two groups: ‘small T’, with T ∈ {2, 3, 5} andN ∈ {200, 500, 1000, 2000};

and the ‘large T’ group, with T ∈ {5, 10, 20} and N ∈ {50, 100, 150, 200}. Simulation results are based

on 250 draws from the data generating process in each case, except for the specification test simulations

which rely on 1,000 simulations.

Figure 2 presents the Root Mean Squared Error (RMSE) of β1 for the four estimators considered.

PF-CRE has the lowest RMSE among the estimators for all N and T sizes. CMLE and Fixed-Effects

account for more heterogeneity than there actually exists in the data generating process, leading to

higher standard deviations, and consequently a higher RMSE. In the case of Fixed-Effects, this higher

standard deviation is compounded by the bias stemming from the incidental parameters problem

when T is small, further increasing the RMSE for this estimator. The final estimator, the traditional

CRE approach, has a performance that is similar to that of CMLE. However, the similarity in RMSEs

between these two estimators comes from a different composition of bias and variance: the CRE

estimator is biased, especially for smaller T sizes, but it achieves a smaller variance because of the

simplicity of its specification compared to FE and CMLE.
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Figure 2: RMSE for β1
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The penalty parameter λ is selected in each individual iteration for PF-CRE; thus, these simulations
also incorporate uncertainty over the optimal penalty parameter.

The better performance of PF-CRE in terms of RMSE is a reflection of two characteristics of

the estimator. First, PF-CRE’s flexible specification allows the estimator to better capture the un-

derlying unobserved heterogeneity in the data generating process. In fact, a version of the PF-CRE

estimator without the penalization step, denoted as F-CRE in Appendix Figures A1 A2 and A3, has

a performance in terms of bias that is the same as the Oracle estimator.44 Second, the penalization

step selects the necessary terms to capture the unobserved heterogeneity and discards those that are

unnecessary, thus reducing the standard error of the estimator by removing nuisance parameters. This

is clearly evidenced in Figure A3 which depicts the standard errors from estimates of PF-CRE, the

unpenalized F-CRE, and the Oracle estimator. Thus, the flexible specification of PF-CRE addresses

the bias concerns, whereas the penalization of PF-CRE reduces the variance by focusing on the flexi-

ble specification terms that actually capture the unobserved heterogeneity and discards those that do

not.

It is clear from Figure 2 that PF-CRE has a lower RMSE than alternative estimators and is

therefore preferable from this point of view. However. PF-CRE has higher computational demands

44The Oracle estimator is the maximum likelihood estimator that uses the exact specification for the unobserved
heterogeneity of the data generating process (which is unfeasible in real applications).
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that could hinder its applicability. Despite this, simulations in Appendix B.1 show that while PF-CRE

has a higher computational costs, they are not prohibitive by any means.

Similarly to the parameter estimates, the RMSE of PF-CRE for estimates of the average partial

effect (APE) is also the smallest among the estimators presented in Figure 3. This advantage is

smaller for larger sample sizes, but it is not expected to disappear asymptotically given that PF-CRE

is an efficient estimator and the alternative ones are not.

The performance of the Linear Probability Model, Fixed-effects, and CRE are similar to one

another, despite being quite different estimators. The vast majority of this RMSE derives from higher

standard errors, as the bias in estimating average partial effects tends to be smaller than that of the

model coefficients themselves (partly a consequence of the ‘average’ in APEs). This is particularly

interesting in the case of FE since while it is clearly inferior to CMLE in estimating the model

parameters, it has a similar performance in terms of APEs.

Figure 3: RMSE for Average Partial Effect of x1
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The penalty parameter λ is selected in each individual iteration for PF-CRE; thus, these simulations
also incorporate uncertainty over the optimal penalty parameter.

While the average partial effect is usually the main quantity of interest to researchers, other

quantities may be of interest too. Predicted probabilities are among those other quantities of interest.
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Not only they may be of interest by themselves, but they are also a constituent part of partial effects

at interesting values of the covariates.

PF-CRE has the least average absolute bias in estimating predicted probabilities for each individual

in the sample (Figure 4). All other estimators have a higher absolute bias. CRE and LPM have a

performance similar to each other. But their performance does not seem to improve noticeably with

sample size (particularly not in N). Fixed-effects has the poorest performance in the estimation of

predicted probabilities. This poorer performance will translate into poorer partial effect estimates.

Figure 4: Average Absolute Bias for Individual Probabilities
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The penalty parameter λ is selected in each individual iteration for PF-CRE; thus, these simulations
also incorporate uncertainty over the optimal penalty parameter.

Figures 5 and 6 present the results of simulations for the specification test. These results show that,

across 1,000 simulations, the empirical distribution of the specification test approximates theoretical

expectations of a χ2 distribution. However, for the larger T sizes, there is a slight tendency to over-

reject, whereas for the smaller T sizes there is a slight tendency to under-reject the null hypothesis,

especially when N is large too. This less-than-ideal performance of the specification test comes from

a common issue in Hausman-type tests: the tendency to have low power, mainly because they make

difficult comparisons between competing models. For the linear models, in fact, Clark and Linzer

(2015) and Bell and Jones (2015) recommend interpreting the results of these types of test with care
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because of this and related issues.

To help determine whether the less-than-ideal performance of the specification test is indeed due to

these common problems rather than to the pointwise (as opposed to uniform) convergence of PF-CRE,

I conduct additional simulations in Appendix E that compare estimates from the Oracle estimator

and CMLE. The simulations show that the Oracle, which although unfeasible in real life applications

converges uniformly, has a similar performance to PF-CRE.

While the specification test overall works as expected, the results from the test should be taken with

some caution given its tendency to slightly over and under-reject, depending on the circumstances.

Nonetheless, the test still follows the general expected theoretical behavior and is a useful indicator of

whether the assumptions underlying PF-CRE are warranted in a particular application of the method,

although it is always beneficial to additionally conduct a visual inspections of the estimates compared

to those of CMLE.

Figure 5: Quantile-Quantile Plot for Specification Test: Large T

Observed are the sample quantiles from the simulations. Theoretical are the theoretical quantiles from
a χ2

(4). The shaded area represents the 95% theoretical quantile.

Overall, the simulations presented here, together with those in the appendix, show that the asymp-

totic properties of PF-CRE derived in Section 2 travel well to finite samples, despite PF-CRE con-

verging pointwise rather than uniformly and the approximate nature of the algorithm. The PF-CRE

estimator produces estimates of the model parameters that are more efficient than those of the CMLE
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Figure 6: Quantile-Quantile Plot for Specification Test: Small T

Observed are the sample quantiles from the simulations. Theoretical are the theoretical quantiles from
a χ2

(4). The shaded area represents the 95% theoretical quantile.

estimator when the data generating process for the unobserved heterogeneity satisfies the assumptions

of PF-CRE. Simulations in Appendices C and D show that these advantages remain for rare-events

data and are robust to some violations of the exchangeability assumption. In addition, the simulations

also show the advantages of PF-CRE in estimating average partial effects and predicted probabilities,

having better finite sample properties than the traditional correlated random effects estimator, the

fixed effects, and the linear probability model. Finally, the simulations also show that the specifica-

tion test has a distribution that is close to theoretical expectations, although it has a tendency to

over-reject for small N , large T datasets and to under-reject in large N , small T datasets, and should

therefore be interpreted with some care.

6 Short Panel Application: Tactical Voting in the U.K.

In elections with more than two candidates, voters often cast tactical votes. That is, when they believe

their most preferred candidate is unlikely to win, they often vote for a less preferred candidate with

chances of winning, if only to prevent their most disliked one from being elected (Duverger, 1954).45

45I use the term tactical voting instead of strategic voting, as it is the common denomination used for this behavior
in Britain.
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The literature on tactical voting has generally focused on measuring its extent, but less on why some

voters behave tactically while others do not. As such, work has focused on voter demographics or

electoral circumstances associate with tactical behavior: weak partisan or ideological attachments

(e.g., Blais, 2002); political knowledge and education (e.g., Alvarez et al., 2006); as well as familiarity

with the electoral system (e.g., Spenkuch, 2017; Duch and Palmer, 2002); the closeness of the election

(e.g., Kiewiet, 2013; Elff, 2014; Núñez, 2016); or availability of a close substitute (Karp et al., 2002).

While these correlates are important, they are, however, non-actionable: they are not variables an

electoral participant can modify. For this reason, I study the one of the most common actionable

variables in political campaigns: out-reach to voters.

The empirical challenge in determining the impact of local campaigns on voters’ propensity to cast

a tactical vote lies in separating the effect of party contacts themselves, from the fact that parties will

try to contact those already likely to be swayed their way.

Another way of thinking about this empirical challenge is that from a researcher’s point of view,

the process or information about voters that parties use to choose which types of voters to contact

constitutes unobserved heterogeneity in voters’ behavior that is correlated with being contacted by a

party. To the extent that which voters are in contention throughout the campaign and parties’ local

campaign strategies remain relatively stable, this unobserved heterogeneity is constant in time. This

does not mean that parties’ must be contacting the same voters, but instead, the same types of voters.

Thus, to address this challenge, I use a panel data survey collected prior to the 2015 United

Kingdom General Election, covering the three months prior to election day. Controlling for unobserved

heterogeneity using PF-CRE allows me to reduce or eliminate the concerns stemming from parties’

choosing which voters to reach out to, that would otherwise generate upward bias in the estimates. I

restrict the sample to respondents that reported vote intention and party preferences in at least two

waves of the panel. This leaves 3,824 respondents for a total of 10,378 observations. I impute missing

values for other variables using the package mice in R (Buuren and Groothuis-Oudshoorn, 2011).

The analysis focuses on those voters whose most preferred party is not viable, a common approach

in the study of tactical voting (Alvarez et al., 2006). I define a party as viable if it finished among the

top-two in a given district. I define voters’ most preferred party in the following way: (1) the party

with the highest thermometer score; (2) if there are ties, these are broken by the thermometer scores

for the leaders of the corresponding parties; (3) if ties remain, then all tied parties are considered the
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voters’ most preferred party.46 I define voters’ most preferred viable party as the most preferred party

from among the viable ones.

The covariates of interest are indicators for whether a voter’s most preferred party or most preferred

viable party contacted the voter during the four weeks prior to each wave. I also include as dependent

variables the thermometer score for the most preferred and most preferred viable parties as reported

by each respondent, measured on a scale from 1 to 10.47

Given that I use the logistic distribution in this application, I compare the coefficient estimates from

the PF-CRE estimator with those of CMLE. While both PF-CRE and CMLE account for unobserved

heterogeneity, only PF-CRE allows for the estimation of partial effects. Additionally, I also include

the FE estimator for comparison, although since the T dimension of the data is small (2 ≤ T ≤ 3,

depending on the individual) it is known to be biased. Finally, I also include the traditional CRE

specification for comparison.

Figure 7 shows the coefficient estimates from PF-CRE, CMLE, CRE, and FE.48 PF-CRE estimates

look remarkably similar to the CMLE ones. Indeed, the specification test does not reject the null

hypothesis that PF-CRE is consistent and more efficient than CMLE, with a p-vlaue of 0.48. The

traditional CRE approach, however, shows estimates that differ from CMLE, with the specification

test rejecting its validity. This application illustrates that the traditional CRE method is not always

robust to misspecification of the unobserved heterogeneity. The FE estimates are biased, which is

expected, and also have a higher standard error than the other estimates.

46In these cases, a tactical vote for these voters only occurs when none of their most preferred parties are viable and
they cast a vote for the most liked viable party.

47I also produces estimates (not reported) that include a number of time-invariant characteristics: employment status,
retirement status, education, gender, age, and home ownership. When including these time-invariant characteristics,
the estimates are qualitatively and quantitatively similar.

48See Table F1 in the appendix for details with the estimates from the three models.
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Figure 7: Coefficient Estimates, Tactical Voting 2015 U.K. Election
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Figure 8 presents the partial effects for the PF-CRE, CRE, and FE estimators. While the CMLE

and PF-CRE coefficient estimates are indistinguishable from one another, only the PF-CRE estimator

provides estimates of probabilities, partial effects, and average partial effects.

Figure 8: Average Partial Effects, Tactical Voting 2015 U.K. Election
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The PF-CRE estimates of the average partial effect show that when respondents are contacted

26



by their most preferred party, they are 4.6% less likely to cast a tactical vote for a less preferred

party, suggesting that party contact enforces party loyalty or sincerity in voters. The CRE estimator,

instead, estimates this effect at 7.5%. Interestingly, being contacted by the most preferred viable

party has a countervailing effect that is stronger than being contacted by the most preferred party,

increasing the probability of casting a vote for a less preferred party by 6.4% according to PF-CRE

estimates. However, the CRE model underestimates this effect at 3%, about half the size of the PF-

CRE’s estimate. The FE estimates lie somewhat in between the estimates from CRE and PF-CRE,

thus having lower bias than CRE in this case. However, they have a substantially larger variance,

a reflection of the efficiency costs of allowing for unrestricted heterogeneity when it is not in fact

necessary.

The results presented here illustrate that the CRE method cannot always fully account for the

unobserved heterogeneity. In particular, coefficient estimates from CRE are statistically different

from those of CMLE and PF-CRE. Additionally, average partial effects from CRE are noticeably

different from those of PF-CRE. CRE estimates might be a tempting approach given PF-CRE’s

higher computational demands. However, the estimation of PF-CRE took 5.15 minutes, whereas that

of CRE took 1.56 minutes. While this is a three-fold increase in computing time, it is still a relatively

short wait. More importantly, while CRE does account for some unobserved heterogeneity (compared

to unreported logit estimates), CRE estimates retain a noticeable amount of bias in this application.

Therefore, the bias reduction from PF-CRE more than warrants its higher computation time.

7 Long Panel Application: Economic Sanctions

Here I consider a large T panel that analyzes the destabilization effects of economic sanctions in the

countries targeted. Based on the equilibrium of a formal model, Marinov (2005) hypothesizes that

economic sanctions should, on average, destabilize the governments of the countries they target.

The challenge in estimating these effects is the potential for omitted variables. In particular, Mari-

nov (2005) notes that country-specific factors like unique political cultures or historical experiences

are likely to influence government stability possibly generating bias in the estimates. Therefore, the

use of models that account for time-invariant unobserved heterogeneity is necessary.

The data come from Marinov (2005). The dependent variable is an indicator for leadership change
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in a given country and year. The data includes information about 160 countries from 1947 to 1999,

with up to 50 years of data for each, for a total of 5,766 observations.49 The main independent

variable of interest is economic sanctions collected from an updated version of Hufbauer et al. (1990),

transformed into an indicator for whether the country was subject to sanctions in a given year. The

data also includes several time-varying control variables: indicator variables for involvement in a

militarized-interstate dispute with use of force, economic growth rate, GDP per capita, indicators for

democratic and for mixed regimes (also interacted with time), the incumbent leaders’ age and time

in office, and a cubic spline.

The main analysis in Marinov (2005) corresponds to the first column of Table 2, which is replicated

here.50 The original paper used CMLE to estimate the coefficients of the main table, but it also used

the fixed-effects estimator to produce substantive effects. While the original paper estimated the

average increase in risk of losing power from economic sanctions, here I estimate the average partial

effect, or the increase in probability of losing power.51

Since the original results are also derived from a logistic model, I use the logistic distribution for

PF-CRE. I compare both parameter estimates and estimates of the average partial effect for the effect

of economic sanctions on leader survival using four estimators: CMLE, Fixed-Effects, a traditional

CRE, and PF-CRE.

Figure 9 presents the estimated coefficients for the first five independent variables reported in the

main results in Marinov (2005) (see all covariates in Table F2). As the figure shows, all four estimators

produce very similar point estimates. Since CMLE imposes no restrictions on the unobserved het-

erogeneity, it can be used as a benchmark for the truth. The Fixed-Effects (FE) estimator produces

point estimates that are similar to those of CMLE and with a similar degree of uncertainty. This is

to be expected given that T is large and, therefore, FE should have a negligible bias.

The point estimates from the traditional CRE model and the PF-CRE model are also similar to

those of CMLE, suggesting that both are valid approaches in this case and can capture the unobserved

heterogeneity.52 However, PF-CRE has smaller standard errors, which is reflected in the shorter

49There are a total of 6,782 observations before accounting for missing values in one of more covariates.
50Please note that there are minor differences between the estimates in the original paper and the ones presented

here due to different rounding methods.
51These two quantities are derived from the same calculations. Change in risk refers to the relative change in the

probability of the outcome occurring, whereas the average partial effect measures the absolute change in the probability
of the outcome occurring.

52The specification tests supports the validity of PF-CRE in this application, with a p-value of 0.95. This is not
the case with the CRE model, despite the extreme similarity of the point estimates. This is due to CRE not having a
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confidence intervals. This illustrates the efficiency advantage of the PF-CRE approach relative to

alternative estimators, even if they all produce very similar point estimates.

Figure 9: Coefficient Estimates for Marinov (2005)
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The λ parameter in the SCAD penalty was chosen using the Akaike Information Criterion. All con-
fidence intervals at 95%. Full results are presented in Table F2 in the Appendix.

Figure 10 presents the average partial effect of economic sanctions on leader survival, the main

variable of interest, obtained from the three estimators that allow for the estimation of these effects:

the traditional CRE, FE, and PF-CRE. The point estimates are very similar for the three estimators.

FE estimates that economic sanctions increase the probability of leadership change by 3.3%, while

PF-CRE estimates this quantity at 2.7%, and CRE at 2.9%.

However, despite the point estimates being very similar across the three estimators, PF-CRE has

a smaller standard error. In fact, the standard error of PF-CRE is 82% of the FE standard error and

80% of the CRE standard error. This instance clearly illustrates the efficiency advantage of PF-CRE

relative to both FE and CRE. FE spends many degrees of freedom in estimating the individual fixed-

effects, which translates into increased uncertainty for estimated probabilities and average partial

effects. CRE, estimates fewer parameters, but does not necessarily capture the unobserved hetero-

geneity very precisely. The PF-CRE estimator, on the other hand, obtains a more efficient estimate

thanks to the combination of a flexible specification that captures the unobserved heterogeneity more

precisely and a penalization step that avoids the estimation of too many parameters. The precision

smaller variance than CMLE.
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gains from PF-CRE relative to CRE do not come at a high computational cost: the estimation of the

CRE model took 0.5 minutes, while that of PF-CRE took 2.1 minutes. While it is a 4-fold increase

in time, the additional 1.5 minutes in estimation time are worth the efficiency gains.

Figure 10: Average Partial Effects for Marinov (2005)
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8 Conclusion

Unobserved heterogeneity is pervasive in observational studies in political science, and the social

sciences in general. Whatever its origins and form, all unobserved heterogeneity poses the same

problem: if ignored, and correlated with the covariates of interest, it leads to biased and inconsistent

estimates. One of the best ways to deal with unobserved heterogeneity is to use panel data. However,

a standing problem in the case of binary outcomes (and discrete outcomes generally) is that consistent

estimators of the model parameters do not allow for the estimation of partial effects, which are usually

the quantity of interest to researchers.

In this paper, I develop the Penalized Flexible Correlated Random Effects (PF-CRE) estimator for

binary outcome models with panel data. PF-CRE provides consistent and efficient estimates of the

model parameters and partial effects. It relies on adopting a flexible specification for the unobserved

heterogeneity that is complemented with a penalization step for variable selection. The flexibility is

derived from mild assumptions on the unobserved heterogeneity that contribute to the estimator’s

consistency, and the penalization step induces a parsimonious model that results in efficiency gains.

Moreover, I provide a model specification test for the logistic case as an indirect test of PF-CRE’s

underlying assumptions. While PF-CRE is more computationally demanding that alternative esti-

mators, the additional time required is not excessive and is more than warranted by the gains in

consistency and efficiency.
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The PF-CRE estimator has a number of advantages relative to alternative estimators. Unlike

Fixed Effects, it does not suffer from the incidental parameters problem that leads to inconsistent

estimates. PF-CRE allows for the estimation of partial effects that the Conditional Maximum Likeli-

hood estimator does not provide. Finally, its assumptions are significantly less restrictive than those of

traditional Correlated Random Effects models, meaning that PF-CRE’s assumptions are more likely

to hold in real world applications.

PF-CRE can be applied in other areas of social science and applications well beyond those included

in this paper. The expected benefits from applying PF-CRE will likely vary by application. In small

T environments, the most important gain from PF-CRE is the ability to produce consistent estimates

of partial effects and probabilities under much milder assumptions than alternative estimators. In

large T environments, the PF-CRE’s main advantage are its efficiency gains relative to alternative

consistent estimators. This efficiency gain might be substantial in some applications with implications

to substantive results; for example in areas like comparative political institutions and international

relations, where most of the variation in the data is usually across units and within unit variation is

typically much smaller. Methods like CMLE and Fixed Effects tend to discard most of the information

in the data, often leading to statistically non significant results in these environments. The alternative

is to ignore unobserved heterogeneity, which is also not desirable as it introduces bias. The appeal of

PF-CRE in these cases is that while it accounts for unobserved heterogeneity, it does not discard all

cross-sectional variation in the data, as my large T panel replication demonstrates. This is what the

penalization step accomplishes: if it selects a relatively sparse specification for the unobserved hetero-

geneity, a significant portion of cross-sectional variation will still be used to estimate the parameters

of interest, partial effects, and probabilities.
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Online Appendix to

Partial Effects for Binary Outcome Models with

Unobserved Heterogeneity

Lucas Núñez

A PF-CRE, F-CRE, and the Oracle Estimator

In this section I provide additional simulations that compare the PF-CRE estimator with the Oracle

as well as an unpenalized version of PF-CRE, denoted F-CRE. The goal is to illustrate how to

two components of PF-CRE, flexible specification and penalization, work together to accomplish

first consistency and then efficiency in the estimates. Each set includes 100 simulations. The data

generating process in these simulations is similar to that in the main body of the paper with only one

modification. The variance of one of the independent variables was increased from 1 to 4. This makes

the selection of polynomial terms more difficult and was purposely included so as not to overstate the

ability of the estimator to recover the Oracle estimates.

The simulations show the estimators perform as expected. Figure A1 shows that the Oracle has

the smaller RMSE, followed by PF-CRE, and then F-CRE, which is expected, since F-CRE does

not include the penalization step and therefore includes many nuisance terms in the polynomial that

increase uncertainty over the estimates.

Figures A2 and A3 present the bias and standard error of the three estimators. It is clear from

these figures that the consistency result in PF-CRE is in fact achieved by its flexible specification,

as F-CRE has an almost identical performance to PF-CRE in terms of bias. Both estimators behave

almost identically to the Oracle, having no bias, with the exception of simulations in which both N

and T are small. Finally, a comparison of the standard errors of F-CRE and PF-CRE shows that the

RMSE gains of the latter accrue from the penalization step.
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Figure A1: RMSE for β from PF-CRE, F-CRE, and the Oracle
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Figure A2: Bias for β from PF-CRE, F-CRE, and the Oracle
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Figure A3: Standard Error for β from PF-CRE, F-CRE, and the Oracle
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B Additional Simulation Results

B.1 Computing Times

It is clear from Figure 2 in the text that PF-CRE has a lower Root Mean Squared Error than

alternative estimators and is therefore preferable from this point of view. However, PF-CRE has higher

computational demands than the other estimators which could hinder its applicability.53 However,

Table B1 shows that while PF-CRE’s computing times are indeed larger than those for the traditional

CRE, they are not prohibitive by any means. Overall, PF-CRE estimation takes up to around three

times as much as that of CRE, and this ratio tends to be lower when the T -dimension of the data is

larger.54 While a threefold increase in computing time could become a concern in very large datasets

(models with a large number of variables and observations), it is not so for the more typical datasets

used in political science. As described in the text, the estimation time for PF-CRE in the two

applications presented in this paper are 5.15 minutes (versus 1.56 minutes for CRE) and 2.1 minutes

(compared to 0.5 minutes for CRE), all acceptable wait times.55

Table B1: Computing Times, PF-CRE v. CRE

Large T Small T
PF-CRE CRE N T PF-CRE CRE N T

9.5 3.4 50 5 17.0 7.1 200 2
11.7 5.6 50 10 15.9 8.5 200 3
18.1 10.8 50 20 20.2 10.9 200 5
12.5 6.1 100 5 40.1 18.3 500 2
17.2 9.9 100 10 46.3 19.7 500 3
29.4 18.9 100 20 61.2 26.5 500 5
15.1 8.7 150 5 92.3 36.2 1000 2
24.8 14.7 150 10 111.6 42.1 1000 3
43.9 27.2 150 20 154.4 63.4 1000 5
20.2 10.9 200 5 243.9 75.6 2000 2
32.6 18.7 200 10 308.0 92.9 2000 3
60.6 38.4 200 20 398.0 124.9 2000 5

Results are in seconds. All times are averages from 100 simulations for each N and T combination.

53Estimation times for FE depend on which algorithm is applied. Directly using dummy variables for the fixed-
effects can lead to enormous computation times. However, estimation via alternative algorithms like that proposed by
Stammann (2017) are very fast.

54This relatively low ratio of speeds might seem counter-intuitive at first, since in principle PF-CRE requires the
estimation of multiple CRE-type models in the grid-search for the penalization parameter λ. However, the computational
implementation takes advantage of the continuous shrinking induced by the SCAD penalty (Fan and Li, 2001) and
initializes the algorithm for each λ value on the parameter estimates from the previous one, thus speeding convergence
substantially.

55These computing times were obtained using non-parallel computing on a Laptop PC with Intel Core i7 2.00GHz
Quad Core processor with 8GB of RAM.
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B.2 Coverage Probabilities

While the PF-CRE estimator tends to produce smaller standard errors, it is important to determine

whether they are not “too” small, in the sense that they underestimate the underlying uncertainty.

This can be done by analyzing the coverage probability of 95% confidence intervals derived from the

simulations. Coverage should be close to the theoretical 95%, although in finite samples it could be

somewhat below the nominal values.

Table B2 presents the coverage probabilities for selected sample sizes for the following estimators:

PF-CRE, the Oracle, CRE, CMLE, and Fixed Effects. Coverage probabilities for the CMLE estimator

are generally very close to the nominal 95%, although for N = 1000, T = 2 they are slightly high. The

Fixed-effects estimator has close to nominal coverage probabilities when T is small, despite it being

biased. However, for large T , coverage probabilities are far from nominal levels. The CRE estimator

has close to nominal coverage for small the T , cases (although slightly high when T = 2), but it has

extremely low coverage for the N = 200, T = 10 case. The PF-CRE estimator, on the other hand,

has coverage probabilities that are somewhat below the nominal values in all cases. However, they

are never substantially below the nominal values and, importantly, it is the only feasible estimator

that can calculate partial effects that does not have a very poor coverage performance in any of the

sample sizes considered in these simulations.

Table B2: Coverage Probabilities, selected sample sizes

PF-CRE Oracle CRE CMLE FE
N = 1000, T = 2 90.00 94.40 98.00 98.00 96.00
N = 1000, T = 5 90.30 94.40 94.80 94.80 93.50
N = 100, T = 10 86.30 89.60 58.20 96.00 60.20
N = 100, T = 20 91.00 93.10 91.40 94.30 70.60
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C Rare Events Simulations

The estimation of models that account for unobserved heterogeneity with rare events data presents

multiple challenges. The presence of many all-zero units in this context, means that estimators that

do not restrict the unobserved heterogeneity in any way, like CMLE and FE, will effectively (or by

design) remove all these units from the estimation of model parameters. This has two implications:

first, it can lead to severe efficiency losses which results in typically useless estimates (see, e.g., Beck

and Katz, 2001); second, it can introduce sample selection bias in the final estimates (see, e.g., Beck,

2020).

Because of these issues, some researchers choose to not control for unobserved heterogeneity, but

this has can leave estimates exposed to bias. Researchers have instead advocated for the use of

random effects or correlated random effects in the linear model context (Clark and Linzer, 2015; Bell

and Jones, 2015). Crisman Cox (2019) advocates for CRE models in the context of binary outcome

models. Cook et al. (2020) instead propose using a version of the Fixed-Effects estimator but imposing

Jeffreys prior on the unit dummies, which effectively restricts the unobserved heterogeneity avoiding

the effective loss of observations and issues derived from it.

Given that the presence of many all-zero units can potentially stress a computational algorithm

(as it can create near singularities and other problems), I present simulations for rare events data.

These simulations follow the same data generating process as those described by equations 15 and

16, with the only exception that the intercept α is set to −4. This more negative intercept together

with the unobserved heterogeneity itself induces a very high number of all zero units. As comparison,

I use the same estimators used in the body of the paper: CMLE , FE, and CRE. I do not include

Cook et al. (2020)’s penalized fixed-effects model as Crisman Cox (2019) shows that CRE typically

outperforms it and CRE is nested within PF-CRE.

These simulations, presented in Figure C1 show results that are largely the same as those presented

in the main body of the paper. PF-CRE has the lowest Root Mean Squared Error, followed by

CRE and, slightly above by CMLE. The FE estimator has the poorest performance of all. The

only difference with the results from the main body of the paper is that the RMSE tends to be

somewhat higher for all estimators (but particularly FE), which is expected since less information can

be extracted from data with less time-variation in the outcome overall.
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Figure C1: RMSE for β1

●
●

●

●

●

● ●

●

●
● ●

5 10 20

50 10
0

15
0

20
0

50 10
0

15
0

20
0

50 10
0

15
0

20
0

0.0

0.5

1.0

1.5

N

Large T

●

● ●

●

●

●

●
●

●

●
●

●

2 3 5

20
0

50
0

10
00

20
00

20
0

50
0

10
00

20
00

20
0

50
0

10
00

20
00

0.0

0.5

1.0

1.5

N

Small T

● PFCRE CRE CMLE FE
The penalty parameter λ is selected in each individual iteration for PF-CRE; thus, these simulations also incorporate
uncertainty over the optimal penalty parameter.
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D Violation of Exchangeability

While a method should ideally not be used when its assumptions are violated, it is nonetheless useful

to assess its performance when that is the case. A reasonable performance under violations of the

underlying assumptions provides some robustness to the estimator and can increase confidence in its

use. This is especially the case when the underlying assumptions are not always easily verifiable, or

only partially verifiable with imperfect tools.

The main assumption in the PF-CRE estimator is assumption 1, which requires that the unob-

served heterogeneity be exchangeable with respect to the time periods for the observed covariates. To

see this, consider a simple case with only one covariate, x, and two time periods, t = 1, 2. Exchange-

ability requires that the distribution of the unobserved heterogeneity conditional on xi1 and xi2 be

the same, even if we switch xi1 with xi2; that is:

f(ci|xi1, xi2) = f(ci|xi2, xi1) Exchangeable (D1)

f(ci|xi1, xi2) 6= f(ci|xi2, xi1) Not Exchangeable (D2)

Here I present a set of simulations in which the exchangeability assumption is violated. I use the

same data generating process presented in equations 15 and 16, with the following modification:

ci =


z1 if xi11 > xi12

−z2 if xi11 ≤ xi12

(D3)

The heterogeneity described in D3 violates exchangeability because its distribution depends on whether

the value of variable x1 in the first time period, xi11 is larger than the value of variable x1 in the second

period, xi12; thus, f(ci| · ··) is not exchangeable with respect to variable x1.

Figure D1 presents the results simulations for both large T and small T panels, with 250 simulations

for each case.

The results from these simulations with a violation of the exchangeability assumption show that

the PF-CRE estimator still outperforms the other estimators in terms of RMSE in both large and

small T environments, although it does have a small bias relative to CMLE.

It is important to mention, however, that this is one possible violation of the exchangeability

8



Figure D1: RMSE for β1 with violation of exchangeability
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The penalty parameter λ is selected in each individual iteration for PF-CRE; thus, these simulations also incorporate
uncertainty over the optimal penalty parameter.

assumption. It is possible that other violations could show different results, with other estimators

having a lower RMSE than PF-CRE. In particular, it is possible that CRE could outperform PF-CRE

in some potential violation of the exchangeability assumption. However, it is important to remember

that if PF-CRE’s assumptions are violated, so are CRE’s assumptions, as CRE is nested in PF-CRE.

In that sense, it is more likely than not, that when PF-CRE’s performance is compromised because

of the violation of it’s assumptions, so will be CRE’s performance.
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E Hausman Test for the Oracle Estimator

Figure E1: Quantile-Quantile Plot for Specification Test: Large T

Observed are the sample quantiles from the simulations. Theoretical are the theoretical quantiles from
a χ2

(4). The shaded area represents the 95% theoretical quantile.

Figure E2: Quantile-Quantile Plot for Specification Test: Large T

Observed are the sample quantiles from the simulations. Theoretical are the theoretical quantiles from
a χ2

(4). The shaded area represents the 95% theoretical quantile.
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F Additional Tables from Applications

Table F1: Coefficient Estimates, Tactical Voting 2015 U.K. Election

PF-CRE CMLE CRE FE
β Low High β Low High β Low High β Low High

Contact Preferred -0.37 -0.60 -0.14 -0.32 -0.57 -0.08 -0.86 -1.12 -0.60 -0.50 -0.81 -0.19
Contact Viable 0.72 0.51 0.93 0.71 0.49 0.94 0.49 0.26 0.72 1.13 0.85 1.41
Therm. Preferred -0.19 -0.27 -0.11 -0.18 -0.27 -0.10 -0.29 -0.37 -0.21 -0.29 -0.39 -0.18
Therm. Viable 0.33 0.26 0.40 0.31 0.24 0.38 0.25 0.18 0.32 0.49 0.40 0.58
n 3,824 3,824 3,824 3,824
Effective n 3,824 1,164 3,824 1,164
Observations 10,378 10,378 10,378 10,378
Effective Obs. 10,378 3,263 10,378 3,263
χ2
(4) 3.44 n/a -129.42 n/a

p-value 0.487 n/a n/a n/a

All confidence intervals are at the 95% level. Low and High represent the upper and lower bounds of the confidence
intervals. Logit standard errors are clustered at the individual level. The effective n and effective number of observations
refers to the number of actual observations used in CMLE. There is no χ2 test reported for CMLE since this estimator
is the basis for that test, nor for FE. The p-value of CRE is not reported since it’s test-statistic is negative.

Table F2: Coefficient Estimates, Marinov (2005) Replication

PF-CRE CMLE CRE FE
β Low High β Low High β Low High β Low High

Sanctions 0.24 0.03 0.46 0.29 0.03 0.55 0.25 -0.01 0.52 0.30 0.03 0.56
Force -0.24 -0.49 0.02 -0.27 -0.54 0.01 -0.26 -0.54 0.01 -0.28 -0.55 0.00
Econ. Growth -1.50 -2.77 -0.23 -1.48 -2.79 -0.16 -1.50 -2.82 -0.18 -1.53 -2.87 -0.19
Wealth -0.04 -0.15 0.08 -0.10 -0.32 0.13 -0.10 -0.32 0.13 -0.10 -0.33 0.13
Democracy 0.17 -0.22 0.56 0.17 -0.24 0.59 0.13 -0.29 0.54 0.18 -0.24 0.60
Dem * ln(t) 0.78 0.55 1.01 0.76 0.53 0.99 0.86 0.63 1.09 0.78 0.54 1.02
Mixed Regime 0.42 0.06 0.78 0.39 0.03 0.76 0.38 0.01 0.75 0.41 0.03 0.78
Mixed * ln(t) 0.37 0.16 0.57 0.38 0.17 0.60 0.40 0.19 0.60 0.40 0.18 0.61
Age 0.02 0.01 0.03 0.02 0.01 0.03 0.02 0.01 0.03 0.02 0.01 0.03
Years in Office -1.00 -1.24 -0.77 -0.97 -1.20 -0.73 -1.10 -1.33 -0.87 -1.00 -1.24 -0.76
Spline 1 -0.19 -0.23 -0.14 -0.18 -0.22 -0.13 -0.19 -0.23 -0.14 -0.18 -0.23 -0.14
Spline 2 0.07 0.05 0.09 0.07 0.05 0.09 0.07 0.05 0.09 0.07 0.05 0.09
Spline 3 -0.01 -0.02 -0.01 -0.01 -0.02 -0.01 -0.01 -0.02 -0.01 -0.01 -0.02 -0.01
n 160 160 160 160
Effective n 160 136 160 136
Observations 5,766 5,766 5,766 5,766
Effective Obs. 5,766 5,295 5,766 5,295
χ2 1.11 n/a -2.31 n/a
p-value 0.95 n/a n/a n/a

All confidence intervals are at the 95% level. Low and High represent the upper and lower bounds of the confidence
intervals. Logit standard errors are clustered at the individual level. The effective n and effective number of observations
refers to the number of actual observations used in CMLE. There is no χ2 test reported for CMLE since this estimator
is the basis for that test, nor for FE. The p-value of CRE is not reported since it’s test-statistic is negative.
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